기존의 수작업으로 이루어지는 터널에서의 균열 검출은 점검자의 주관에 따라 균열을 판별하기 때문에 객관성을 보장하기 어렵다. 이러한 문제를 해결하기 위해서 터널에서 획득된 영상을 기반으로 균열을 검출하는 시스템이 많이 제안되었다. 하지만 기존의 방법은 터널 내부의 조명 상태, 균열 이외의 기타 에지 등 잡음에 상당히 민감하다. 이러한 단점은 터널의 상태에 따라 알고리즘의 성능을 크게 제한시킨다. 본 논문에서는 이러한 단점을 극복하기 위하여 컨볼루셔널 인코더-디코더 네트워크(Convolutional encoder-decoder network)를 이용한 균열 검출 방법을 제안한다. 제안하는 방법은 재현율과 정확률의 비교를 통하여 기존 연구에 비해 성능이 크게 향상되었음을 보였다.
본 논문은 진공을 이용한 흡착방식과 바퀴형 이동방식을 사용하는 벽면 이동로봇의 구성과 이러한 임베디드 환경에 적합하고 기계학습에 기반한 벽면 균열 자동 검출 알고리즘의 성능 비교에 관한 연구이다. 임베디드 시스템 환경에서 객체 학습을 위해 YOLO 등 최근에 시도된 학습 방법들을 적용하여 성능을 비교, 검토하였으며 기존의 에지 검출 알고리즘들과도 성능을 비교하였다. 결국, 본 연구에서는 균열검출을 잘하며 임베디드 환경에도 적합한 최적의 기계학습방법을 선택하고 기존 방법과 성능을 비교하여 우수성을 제시하였다. 또한, 검출된 균열의 영상을 저장하고 위치 정보를 추정하여 균열에 대한 정보를 관리자 기기로 전송하는 지능적인 문제해결 기능을 구축하였다.
균열은 건물, 교량, 도로, 수송관 등의 기반시설의 안전성에 영향을 주는 요소이다. 본 연구에서는 검사 비용과 시간을 줄일 수 있는 자동화된 균열 탐지 시스템을 다룬다. 환경과 표면에 강건한 시스템을 구성하기 위해서, 본 연구에서는 여러 사전 연구에서 사용된 다양한 표면의 균열 데이터 셋을 수집하여 통합 데이터 셋을 구축하였다. 이후, 컴퓨터 비전 분야에 높은 성능을 발휘하는 VGG, ResNet, WideResNet, ResNeXt, DenseNet, EfficientNet 딥러닝 모델을 적용하였다. 통합 데이터 셋은 훈련 집합(80%)과 테스트 집합(20%)으로 나누어 모델 성능을 검증하기 위해서 사용했다. 실험 결과, DenseNet121 모델이 높은 마라미터 효율성을 가지면서도 테스트 집합에 대해 96.20%의 정확도를 달성하여 가장 높은 성능을 보여주었다. 딥러닝 모델의 균열 검출 성능 검증을 통해, DenseNet121를 활용하여 컴퓨팅 자원이 적은 소형 디바이스에서도 높은 균열 검출 성능을 보이는 탐지 시스템을 구축이 가능함을 확인했다.
본 연구에서는 터빈 로터 디스크 키웨이에 발생하는 균열의 상세 정보를 추출하기 위하여 초음파 신호처리 알고리즘을 개발하였다. 초음파 검사 시스템에 의한 터빈 로터 디스크 키웨이 시험편의 초음파 신호로부터 B-주사 이미지를 구성하였다. 구성된 B-주사 이미지를 2차원 신호처리를 위한 입력영상으로 이용하여, 전처리, 균열후보영역 검출, 균열영역 판별 및 균열정보 추출의 4단계로 알고리즘을 구성하였다. 개발된 초음파 신호처리 알고리즘을 이용한 실험을 통하여, 개발된 알고리즘이 키웨이 부위에 발생하는 균열의 특징정보 추출에 의한 균열의 정량적인 평가에 효과적임을 확인하였다.
본 연구는 자동차 브레이크 패드 생산 공정에서 컨베어벨트 실려가는 차종별 패드의 유형을 자동 판별하고 표면의 균열을 검사하는 시스템을 개발한다. 브레이크 패드는 여러 혼합제로 고열, 고압 성형하여 만든다. 패드생성과정에서 패드 표면의 균열 및 손상이 발생한다. 본 연구에서는 불량품을 검출하는데 적합한 시스템 구축하고 응용소프프웨어 개발을 한다. 패드 표면의 균열이나 손상 부위는 인공조명을 비출 때 그림자를 생성하게 되며 이를 컴퓨터 비전 기술을 활용하여 검출한다.
국내에서 상업운전중인 월성 원자로는 캐나다에서 개발한 CANDU형 원자로로 핵연료를 지지하는 핵연료 압력관이 사용되며, 핵연료 압력관은 원자로의 1차기기로 건전성확보가 매우 중요하다. 가동중 검사시 압력관에서 결함이 검출되면, 지속적인 사용을 위해서 결함의 건전성을 확보하여야하나, 그 평가절차가 매우 복잡하다. 본 연구에서는 핵연료 압력관 평가를 보다 신속하고 효율적으로 수행하기 위한 건전성 평가시스템을 개발하였다. 개발된 평가시스템은 예리한 결함 및 둔한 함에 대한 평가를 수행할 수 있으며, 피로균열평가, 지체수소균열평가, 불안정파괴평가, 파단전누설평가, 소성붕괴평가모듈을 수록하고 있다. 또한 개발된 시스템을 검증하기 위하여 캐나다 ECL에서 제시한 평가결과와 비교함으로서 본 시스템의 효용성을 검증하였다.
콘크리트는 압축력에 잘 저항하고 내구성이 우수하여 널리 사용되는 재료이다. 하지만 구조물은 시공 단계에서 주변 환경, 사용되는 재료의 특성에 따라 완공된 후 표면의 균열, 구조물의 침하 등 다양한 하자가 발생하거나 시간이 지남에 따라 콘크리트 구조물 표면에 결함이 발생한다. 그대로 방치하면 구조물에 심각한 손상을 초래하기 때문에 안전 점검을 통해 검사해야 한다. 하지만 전문 검사원들이 직접 조사하기에 비용이 높고 육안으로 판단하는 외관 검사법을 사용한다. 고층 건물일수록 상세한 검사가 힘들다. 본 연구는 노후화로 인해 콘크리트 표면에 발생하는 결함 중 균열을 탐지하는 딥러닝 기반 시맨틱 세그먼테이션 모형과 해당 모형의 특징 추출과 일반화 성능을 높이기 위한 이미지 어그멘테이션 기법을 개발하였다. 이를 위해 공개 데이터셋과 자체 데이터셋을 결합하여 시맨틱 세그먼테이션용 데이터셋을 구축하고 대표적인 딥러닝 기반 시맨틱 세그먼테이션 모형들을 비교실험하였다. 콘크리트 내벽을 중점으로 학습한 모형의 균열 추출 성능은 81.4%이며, 개발한 이미지 어그멘테이션을 적용한 결과 3%의 성능향상을 확인하였다. 향후 고층 건물과 같이 접근성이 어려운 지점을 드론을 통해 콘크리트 외벽에서 균열을 검출할 수 있는 시스템을 개발함으로써 실질적으로 활용할 수 있기를 기대한다.
연구목적: 철도 안전에 영향을 미치는 콘크리트 궤도는 이미지분석 기술을 사용하여 균열을 감지 할 수 있으나 균열을 검출하기 위한 콘크리트 궤도 및 표면 오염의 조건이 균열검측에 방해되므로 이를 효과적으로 제거하기 위한 방법이 필요하다. 연구방법: 본 연구에서는 한국 철도의 균열을 효과적으로 감지하기 위한 이미지 분석 기법을 적용한 프로세스를 제안하고 실험 모듈을 통해 취득된 이미지를 분석하여 성능을 검증하였다. 또한, 우리는 제안된 Gabor Filter Bank 기법을 사용하여 철도 콘크리트 도상 이미지를 획득한 데이터 중 무작위로 선택된 2000개의 이미지를 개발된 프로세스를 통해 자동 균열 검측을 수행하여 타당성을 검토하였다. 연구결과: 연구에서 제안된 시스템으로 균열 검측 결과 탐지율이 약 94% 성능으로 검토되었으며 취득된 철도콘크리트도상이미지의 균열이 동일한 크기와 형식으로 일치하였다. 결론: Gabor Filter Bank를 사용한 균열 검측법은 한국 철도의 콘크리트 궤도도상에 노이즈를 포함한 균열 이미지에 효과적으로 분석되는 것을 확인 할 수 있었다. 이 시스템은 기존의 인간 위주의 철도 산업에서 자동화 된 유지 관리 시스템이 될 수 있을 것으로 기대된다.
본 논문에서는 고가의 디지털 설진 장비와 특별한 장치 없이 누구나 손쉽게 사용할 수 있는 디지털 설진 시스템의 첫 단계로 미각 영역별 균열 유무를 판별하는 시스템을 제안한다. 훈련 DB는 한방 병원에서 수집한 사진 261장을 바탕으로 Haar-like feature, Adaboost 학습을 하였다. 학습된 결과를 통하여 입력영상으로부터 혀 후보영역을 검출하고, 검출된 혀 후보영역으로부터 혀 영역만을 분리하기 위하여 261장의 훈련 DB의 HSV 컬러모델의 Hue 성분 평균 값을 산출하였다. 검출된 혀 윤곽으로부터 Connected Component Labeling을 통하여 혀 영역을 분리 하였다. 분리된 혀 영역의 상대적 너비와 높이를 이용하여 미각 영역별 로 분할하였다. 분할된 미각 영역별 영상은 Gray영상으로 변환하고, 각각의 영역별 평균 밝기를 산출하여 이진화하였다. 이진화 영상에 Connected Component Labeling을 통하여 균열 유무를 판별하였다.
일반적으로 구조물용 외부의 정적 및 동적 하중과 외부환경으로 인하여 피로균열과 부식이 발생하며, 이것은 구조물의 변형을 유발하여 결국 파단으로 이어지기 때문에 균열과 부식의 검출 및 평가와 함께 구조물의 변형에 의한 진동, 변위 기울기와 같은 거동을 감시하는 것도 매우 중요하다. 이에 레이저 센서 시스템을 이용하여 이러한 거동을 측정하여 이상 유무를 모니터링 할 수 있는 구조물 안전감시 시스템을 개발하였다. 본 시스템은 2차원으로 배열한 광전센서를 이용하여 구조물의 변형에 의해 유발된 광궤적의 변화를 감시하며, 또한 데이터를 취득하고 신호처리 할 수 있는 운용 프로그램도 갖추고 있다. 본 연구에서는 개발한 안전 진단 시스템의 필드 적용에 앞서 실험실에서의 몇 가지 실험을 통하여 그 효용성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.