• 제목/요약/키워드: 균열검출시스템

검색결과 43건 처리시간 0.021초

컨볼루셔널 인코더-디코더 네트워크를 이용한 터널에서의 균열 검출 (Crack Detection in Tunnel Using Convolutional Encoder-Decoder Network)

  • 한복규;양현석;이종민;문영식
    • 전자공학회논문지
    • /
    • 제54권6호
    • /
    • pp.80-89
    • /
    • 2017
  • 기존의 수작업으로 이루어지는 터널에서의 균열 검출은 점검자의 주관에 따라 균열을 판별하기 때문에 객관성을 보장하기 어렵다. 이러한 문제를 해결하기 위해서 터널에서 획득된 영상을 기반으로 균열을 검출하는 시스템이 많이 제안되었다. 하지만 기존의 방법은 터널 내부의 조명 상태, 균열 이외의 기타 에지 등 잡음에 상당히 민감하다. 이러한 단점은 터널의 상태에 따라 알고리즘의 성능을 크게 제한시킨다. 본 논문에서는 이러한 단점을 극복하기 위하여 컨볼루셔널 인코더-디코더 네트워크(Convolutional encoder-decoder network)를 이용한 균열 검출 방법을 제안한다. 제안하는 방법은 재현율과 정확률의 비교를 통하여 기존 연구에 비해 성능이 크게 향상되었음을 보였다.

벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구 (A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot)

  • 박재민;김현섭;신동호;박명숙;김상훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.449-456
    • /
    • 2019
  • 본 논문은 진공을 이용한 흡착방식과 바퀴형 이동방식을 사용하는 벽면 이동로봇의 구성과 이러한 임베디드 환경에 적합하고 기계학습에 기반한 벽면 균열 자동 검출 알고리즘의 성능 비교에 관한 연구이다. 임베디드 시스템 환경에서 객체 학습을 위해 YOLO 등 최근에 시도된 학습 방법들을 적용하여 성능을 비교, 검토하였으며 기존의 에지 검출 알고리즘들과도 성능을 비교하였다. 결국, 본 연구에서는 균열검출을 잘하며 임베디드 환경에도 적합한 최적의 기계학습방법을 선택하고 기존 방법과 성능을 비교하여 우수성을 제시하였다. 또한, 검출된 균열의 영상을 저장하고 위치 정보를 추정하여 균열에 대한 정보를 관리자 기기로 전송하는 지능적인 문제해결 기능을 구축하였다.

자동화 균열 탐지 시스템을 위한 딥러닝 모델에 관한 연구 (Deep Learning Models for Autonomous Crack Detection System)

  • 지홍근;김지나;황시정;김도건;박은일;김영석;류승기
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.161-168
    • /
    • 2021
  • 균열은 건물, 교량, 도로, 수송관 등의 기반시설의 안전성에 영향을 주는 요소이다. 본 연구에서는 검사 비용과 시간을 줄일 수 있는 자동화된 균열 탐지 시스템을 다룬다. 환경과 표면에 강건한 시스템을 구성하기 위해서, 본 연구에서는 여러 사전 연구에서 사용된 다양한 표면의 균열 데이터 셋을 수집하여 통합 데이터 셋을 구축하였다. 이후, 컴퓨터 비전 분야에 높은 성능을 발휘하는 VGG, ResNet, WideResNet, ResNeXt, DenseNet, EfficientNet 딥러닝 모델을 적용하였다. 통합 데이터 셋은 훈련 집합(80%)과 테스트 집합(20%)으로 나누어 모델 성능을 검증하기 위해서 사용했다. 실험 결과, DenseNet121 모델이 높은 마라미터 효율성을 가지면서도 테스트 집합에 대해 96.20%의 정확도를 달성하여 가장 높은 성능을 보여주었다. 딥러닝 모델의 균열 검출 성능 검증을 통해, DenseNet121를 활용하여 컴퓨팅 자원이 적은 소형 디바이스에서도 높은 균열 검출 성능을 보이는 탐지 시스템을 구축이 가능함을 확인했다.

터빈 로터 디스크 키웨이의 초음파 신호로부터 균열정보의 추출을 위한 신호처리 알고리즘의 개발 (Ultrasonic Signal Processing Algorithm for Crack Information Extraction on the Keyway of Turbine Rotor Disk)

  • 이종규;서원찬;박찬;이종오;손영호
    • 비파괴검사학회지
    • /
    • 제29권5호
    • /
    • pp.493-500
    • /
    • 2009
  • 본 연구에서는 터빈 로터 디스크 키웨이에 발생하는 균열의 상세 정보를 추출하기 위하여 초음파 신호처리 알고리즘을 개발하였다. 초음파 검사 시스템에 의한 터빈 로터 디스크 키웨이 시험편의 초음파 신호로부터 B-주사 이미지를 구성하였다. 구성된 B-주사 이미지를 2차원 신호처리를 위한 입력영상으로 이용하여, 전처리, 균열후보영역 검출, 균열영역 판별 및 균열정보 추출의 4단계로 알고리즘을 구성하였다. 개발된 초음파 신호처리 알고리즘을 이용한 실험을 통하여, 개발된 알고리즘이 키웨이 부위에 발생하는 균열의 특징정보 추출에 의한 균열의 정량적인 평가에 효과적임을 확인하였다.

브레이크패드 검사 시스템 구축에 관한 연구 (A study on inspection system for brake pad)

  • 김태은
    • 한국전자통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.403-408
    • /
    • 2013
  • 본 연구는 자동차 브레이크 패드 생산 공정에서 컨베어벨트 실려가는 차종별 패드의 유형을 자동 판별하고 표면의 균열을 검사하는 시스템을 개발한다. 브레이크 패드는 여러 혼합제로 고열, 고압 성형하여 만든다. 패드생성과정에서 패드 표면의 균열 및 손상이 발생한다. 본 연구에서는 불량품을 검출하는데 적합한 시스템 구축하고 응용소프프웨어 개발을 한다. 패드 표면의 균열이나 손상 부위는 인공조명을 비출 때 그림자를 생성하게 되며 이를 컴퓨터 비전 기술을 활용하여 검출한다.

CANDU압력관에 대한 건전성평가 시스템 개발 - 예리한 결함 및 둔한결함의 적용 -

  • 곽상록;김영진;이준성;박윤원
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.851-856
    • /
    • 1998
  • 국내에서 상업운전중인 월성 원자로는 캐나다에서 개발한 CANDU형 원자로로 핵연료를 지지하는 핵연료 압력관이 사용되며, 핵연료 압력관은 원자로의 1차기기로 건전성확보가 매우 중요하다. 가동중 검사시 압력관에서 결함이 검출되면, 지속적인 사용을 위해서 결함의 건전성을 확보하여야하나, 그 평가절차가 매우 복잡하다. 본 연구에서는 핵연료 압력관 평가를 보다 신속하고 효율적으로 수행하기 위한 건전성 평가시스템을 개발하였다. 개발된 평가시스템은 예리한 결함 및 둔한 함에 대한 평가를 수행할 수 있으며, 피로균열평가, 지체수소균열평가, 불안정파괴평가, 파단전누설평가, 소성붕괴평가모듈을 수록하고 있다. 또한 개발된 시스템을 검증하기 위하여 캐나다 ECL에서 제시한 평가결과와 비교함으로서 본 시스템의 효용성을 검증하였다.

  • PDF

딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법 (Deep Learning-based Pixel-level Concrete Wall Crack Detection Method)

  • 강경수;류한국
    • 한국건축시공학회지
    • /
    • 제23권2호
    • /
    • pp.197-207
    • /
    • 2023
  • 콘크리트는 압축력에 잘 저항하고 내구성이 우수하여 널리 사용되는 재료이다. 하지만 구조물은 시공 단계에서 주변 환경, 사용되는 재료의 특성에 따라 완공된 후 표면의 균열, 구조물의 침하 등 다양한 하자가 발생하거나 시간이 지남에 따라 콘크리트 구조물 표면에 결함이 발생한다. 그대로 방치하면 구조물에 심각한 손상을 초래하기 때문에 안전 점검을 통해 검사해야 한다. 하지만 전문 검사원들이 직접 조사하기에 비용이 높고 육안으로 판단하는 외관 검사법을 사용한다. 고층 건물일수록 상세한 검사가 힘들다. 본 연구는 노후화로 인해 콘크리트 표면에 발생하는 결함 중 균열을 탐지하는 딥러닝 기반 시맨틱 세그먼테이션 모형과 해당 모형의 특징 추출과 일반화 성능을 높이기 위한 이미지 어그멘테이션 기법을 개발하였다. 이를 위해 공개 데이터셋과 자체 데이터셋을 결합하여 시맨틱 세그먼테이션용 데이터셋을 구축하고 대표적인 딥러닝 기반 시맨틱 세그먼테이션 모형들을 비교실험하였다. 콘크리트 내벽을 중점으로 학습한 모형의 균열 추출 성능은 81.4%이며, 개발한 이미지 어그멘테이션을 적용한 결과 3%의 성능향상을 확인하였다. 향후 고층 건물과 같이 접근성이 어려운 지점을 드론을 통해 콘크리트 외벽에서 균열을 검출할 수 있는 시스템을 개발함으로써 실질적으로 활용할 수 있기를 기대한다.

가버 필터를 사용한 철도 콘크리트 궤도 도상의 자동 균열 감지 개발 (Development of Automatic Crack Detection using the Gabor Filter for Concrete Structures of Railway Tracks)

  • 나용현;박미연;박지수;박성백;권세곤
    • 한국재난정보학회 논문집
    • /
    • 제14권4호
    • /
    • pp.458-465
    • /
    • 2018
  • 연구목적: 철도 안전에 영향을 미치는 콘크리트 궤도는 이미지분석 기술을 사용하여 균열을 감지 할 수 있으나 균열을 검출하기 위한 콘크리트 궤도 및 표면 오염의 조건이 균열검측에 방해되므로 이를 효과적으로 제거하기 위한 방법이 필요하다. 연구방법: 본 연구에서는 한국 철도의 균열을 효과적으로 감지하기 위한 이미지 분석 기법을 적용한 프로세스를 제안하고 실험 모듈을 통해 취득된 이미지를 분석하여 성능을 검증하였다. 또한, 우리는 제안된 Gabor Filter Bank 기법을 사용하여 철도 콘크리트 도상 이미지를 획득한 데이터 중 무작위로 선택된 2000개의 이미지를 개발된 프로세스를 통해 자동 균열 검측을 수행하여 타당성을 검토하였다. 연구결과: 연구에서 제안된 시스템으로 균열 검측 결과 탐지율이 약 94% 성능으로 검토되었으며 취득된 철도콘크리트도상이미지의 균열이 동일한 크기와 형식으로 일치하였다. 결론: Gabor Filter Bank를 사용한 균열 검측법은 한국 철도의 콘크리트 궤도도상에 노이즈를 포함한 균열 이미지에 효과적으로 분석되는 것을 확인 할 수 있었다. 이 시스템은 기존의 인간 위주의 철도 산업에서 자동화 된 유지 관리 시스템이 될 수 있을 것으로 기대된다.

영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템 (Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features)

  • 이민택;이규원
    • 한국정보통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.826-832
    • /
    • 2016
  • 본 논문에서는 고가의 디지털 설진 장비와 특별한 장치 없이 누구나 손쉽게 사용할 수 있는 디지털 설진 시스템의 첫 단계로 미각 영역별 균열 유무를 판별하는 시스템을 제안한다. 훈련 DB는 한방 병원에서 수집한 사진 261장을 바탕으로 Haar-like feature, Adaboost 학습을 하였다. 학습된 결과를 통하여 입력영상으로부터 혀 후보영역을 검출하고, 검출된 혀 후보영역으로부터 혀 영역만을 분리하기 위하여 261장의 훈련 DB의 HSV 컬러모델의 Hue 성분 평균 값을 산출하였다. 검출된 혀 윤곽으로부터 Connected Component Labeling을 통하여 혀 영역을 분리 하였다. 분리된 혀 영역의 상대적 너비와 높이를 이용하여 미각 영역별 로 분할하였다. 분할된 미각 영역별 영상은 Gray영상으로 변환하고, 각각의 영역별 평균 밝기를 산출하여 이진화하였다. 이진화 영상에 Connected Component Labeling을 통하여 균열 유무를 판별하였다.

레이저와 2차원 배열의 광전검출기를 이용한 구조물의 변위측정 시스템의 개발에 관한 연구 (A Study on Development of Displacement Measurement System for Structure using a Laser and 2-D Arrayed Photo Sensors)

  • 강문필;이진이;김민수;김대정;최원하;강기훈;김종수;김훈
    • 비파괴검사학회지
    • /
    • 제22권1호
    • /
    • pp.22-31
    • /
    • 2002
  • 일반적으로 구조물용 외부의 정적 및 동적 하중과 외부환경으로 인하여 피로균열과 부식이 발생하며, 이것은 구조물의 변형을 유발하여 결국 파단으로 이어지기 때문에 균열과 부식의 검출 및 평가와 함께 구조물의 변형에 의한 진동, 변위 기울기와 같은 거동을 감시하는 것도 매우 중요하다. 이에 레이저 센서 시스템을 이용하여 이러한 거동을 측정하여 이상 유무를 모니터링 할 수 있는 구조물 안전감시 시스템을 개발하였다. 본 시스템은 2차원으로 배열한 광전센서를 이용하여 구조물의 변형에 의해 유발된 광궤적의 변화를 감시하며, 또한 데이터를 취득하고 신호처리 할 수 있는 운용 프로그램도 갖추고 있다. 본 연구에서는 개발한 안전 진단 시스템의 필드 적용에 앞서 실험실에서의 몇 가지 실험을 통하여 그 효용성을 검증하였다.