• Title/Summary/Keyword: 규칙 찾기

Search Result 82, Processing Time 0.027 seconds

A Study on Identification of Optimal Fuzzy Model Using Genetic Algorithm (유전알고리즘을 이용한 최적 퍼지모델의 동정에 관한연구)

  • 김기열
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2000
  • A identification algorithm that finds optimal fuzzy membership functions and rule base to fuzzy model isproposed and a fuzzy controller is designed to get more accurate position and velocity control of wheeled mobile robot. This procedure that is composed of three steps has its own unique process at each step. The elements of output term set are increased at first step and then the rule base is varied according to increase of the elements. The adjusted system is in competition with system which doesn't include any increased elements. The adjusted system will be removed if the system lost. Otherwise, the control system is replaced with the adjusted system. After finished regulation of output term set and rule base, searching for input membership functions is processed with constraints and fine tuning of output membership functions is done.

  • PDF

Position Control of Wheeled Mobile Robot using Self-Structured Neural Network Model (자율가변 구조의 신경망 모델을 이용한 구륜 이동 로봇의 위치 제어)

  • Kim, Ki-Yeoul;Kim, Sung-Hoe;Kim, Hyun;Lim, Ho;Jeong, Young-Hwa
    • The Journal of Information Technology
    • /
    • v.4 no.2
    • /
    • pp.117-127
    • /
    • 2001
  • A self-structured neural network algorithm that finds optimal fuzzy membership functions and nile base to fuzzy model is proposed and a fuzzy-neural network controller is designed to get more accurate position and velocity control of wheeled mobile robot. This procedure that is composed of three steps has its own unique process at each step. The elements of output term set are increased at first step and then the rule base Is varied according to increase of the elements. The adjusted controller is in competition with controller which doesn't include any increased elements. The adjusted controller will be removed if the control-law lost. Otherwise, the controller is replaced with the adjusted system. After finished regulation of output term set and rule base, searching for input membership functions is processed with constraints and fine tuning of output membership functions is done.

  • PDF

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Deriving rules for identifying diabetic among individuals with metabolic syndrome (대사증후군 환자 가운데 당뇨환자를 찾기 위한 규칙 도출)

  • Choi, Jinwook;Suh, Yongmoo
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.363-372
    • /
    • 2018
  • The objective of this study is to derive specific classification rules that could be used to prevent individuals with Metabolic Syndrome (MS) from developing diabetes. Specifically, we aim to identify rules which classify individuals with MS into those without diabetes (class 0) and those with diabetes (class 1). In this study we collected data from Korean National Health and Nutrition Examination Survey and built a decision tree after data pre-processing. The decision tree brings about five useful rules and their average classification accuracy is quite high (75.8%). In addition, the decision tree showed that high blood pressure and waist circumference are the most influential factors on the classification of the two groups. Our research results will serve as good guidelines for clinicians to provide better treatment for patients with MS, such that they do not develop diabetes.

Discovering Association Rules using Item Clustering on Frequent Pattern Network (빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견)

  • Oh, Kyeong-Jin;Jung, Jin-Guk;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.

  • PDF

An Experimental Study on Selecting Association Terms Using Text Mining Techniques (텍스트 마이닝 기법을 이용한 연관용어 선정에 관한 실험적 연구)

  • Kim, Su-Yeon;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.3 s.61
    • /
    • pp.147-165
    • /
    • 2006
  • In this study, experiments for selection of association terms were conducted in order to discover the optimum method in selecting additional terms that are related to an initial query term. Association term sets were generated by using support, confidence, and lift measures of the Apriori algorithm, and also by using the similarity measures such as GSS, Jaccard coefficient, cosine coefficient, and Sokal & Sneath 5, and mutual information. In performance evaluation of term selection methods, precision of association terms as well as the overlap ratio of association terms and relevant documents' indexing terms were used. It was found that Apriori algorithm and GSS achieved the highest level of performances.

Constructing Gene Regulatory Networks using Temporal Relation Rules from 3-Dimensional Gene Expression Data (3차원 유전자 발현 데이터에서의 시간 관계 규칙을 이용한 유전자 상호작용 조절 네트워크 구축)

  • Meijing Li;Jin Hyoung Park;Heon Gyu Lee;Keun Ho Ryu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.340-343
    • /
    • 2008
  • 유전자들은 복잡한 상호작용을 통해 세포의 기능이 조절된다. 상호작용하는 유전자 그룹들을 유전자 조절 네트워크라고 한다. 기존의 유전자 조절 네트워크는 2D microarray 데이터를 이용하여 시간의 흐름에 따른 유전자간의 상호작용을 알 수가 없었다. 이 논문에서는 시간의 변화에 따른 유전자들 간의 조절관계를 살펴 볼 수 있는 조절네트워크 모델링의 방법을 제시한다. 유전자의 발현양을 표시하기 위해 이진 이산화 방법을 사용하였고 3D microarray 데이터에서 유전자 발현 패턴을 찾기 위해 Cube mining 알고리즘을 적용하였고, 유전자간의 관계를 밝히기 위해 시간 관계 규칙탐사 기법을 사용하여 유전자들 간의 시간 관계를 포함한 유전자 조절네트워크를 구축하였다. 이 연구는 시간의 흐름에 따른 유전자간의 상호작용을 알 수 있으며, 모델링된 조절 네트워크를 이용하여 기능이 아직 발견되지 않은 유전자들의 기능을 예측 할 수 있다.

A Rule-based Approach to Identifying Citation Text from Korean Academic Literature (한국어 학술 문헌의 본문 인용문 인식을 위한 규칙 기반 방법)

  • Kang, In-Su
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.4
    • /
    • pp.43-60
    • /
    • 2012
  • Identifying citing sentences from article full-text is a prerequisite for creating a variety of future academic information services such as citation-based automatic summarization, automatic generation of review articles, sentiment analysis of citing statements, information retrieval based on citation contexts, etc. However, finding citing sentences is not easy due to the existence of implicit citing sentences which do not have explicit citation markers. While several methods have been proposed to attack this problem for English, it is difficult to find such automatic methods for Korean academic literature. This article presents a rule-based approach to identifying Korean citing sentences. Experiments show that the proposed method could find 30% of implicit citing sentences in our test data in nearly 70% precision.

A system for facial expression synthesis based on a dimensional model of internal states (내적상태 차원모형에 근거한 얼굴표정 합성 시스템)

  • 한재현;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.11-21
    • /
    • 2002
  • Parke and Waters' model[1] of muscle-based face deformation was used to develop a system that can synthesize facial expressions when the pleasure-displeasure and arousal-sleep coordinate values of internal states are specified. Facial expressions sampled from a database developed by Chung, Oh, Lee and Byun [2] and its underlying model of internal states were used to find rules for face deformation. The internal - state model included dimensional and categorical values of the sampled facial expressions. To find out deformation rules for each of the expressions, changes in the lengths of 21 facial muscles were measured. Then, a set of multiple regression analyses was performed to find out the relationship between the muscle lengths and internal states. The deformation rules obtained from the process turned out to produce natural-looking expressions when the internal states were specified by the pleasure-displeasure and arousal-sleep coordinate values. Such a result implies that the rules derived from a large scale database and regression analyses capturing the variations of individual muscles can be served as a useful and powerful tool for synthesizing facial expressions.

  • PDF

On the Privacy Preserving Mining Association Rules by using Randomization (연관규칙 마이닝에서 랜덤화를 이용한 프라이버시 보호 기법에 관한 연구)

  • Kang, Ju-Sung;Cho, Sung-Hoon;Yi, Ok-Yeon;Hong, Do-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.439-452
    • /
    • 2007
  • We study on the privacy preserving data mining, PPDM for short, by using randomization. The theoretical PPDM based on the secure multi-party computation techniques is not practical for its computational inefficiency. So we concentrate on a practical PPDM, especially randomization technique. We survey various privacy measures and study on the privacy preserving mining of association rules by using randomization. We propose a new randomization operator, binomial selector, for privacy preserving technique of association rule mining. A binomial selector is a special case of a select-a-size operator by Evfimievski et al.[3]. Moreover we present some simulation results of detecting an appropriate parameter for a binomial selector. The randomization by a so-called cut-and-paste method in [3] is not efficient and has high variances on recovered support values for large item-sets. Our randomization by a binomial selector make up for this defects of cut-and-paste method.