• 제목/요약/키워드: 규칙기반 추론

검색결과 347건 처리시간 0.023초

유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어 (Fuzzy Control of Smart Base Isolation System using Genetic Algorithm)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권2호통권42호
    • /
    • pp.37-46
    • /
    • 2005
  • 현재까지 많은 스마트 면진시스템이 제안되었고 연구되어 왔다. 본 연구에서는 스마트 면진시스템의 면진장치와 보조감쇠 장치로서 새로운 형태의 마찰진자시스템(FPS)과 MR 감쇠기를 각각 사용한다. 퍼지로직제어기(FLC)가 고유의 견실성과 비선형 및 불확실성을 쉽게 다룰 수 있는 능력이 있기 때문에 MR 감쇠기의 감쇠력을 조절하는데 FLC를 사용한다. 또한 FLC의 성능을 최적화 하기 위해서는 유전자알고리즘(GA)을 사용한다. GA를 사용함으로써 소속함수의 형상을 조절하는 것뿐만 아니라 적절한 퍼지제어규칙을 결정할 수 있다. 이를 위하여 본 연구에서는 부분개선 유전자알고리즘을 사용하였다. 이 방법은 유전자의 특정부분을 향상시키는데 효율적이다. FPS와 MR 감쇠기의 동적거동을 표현하기 위해서는 뉴로?퍼지 모델을 사용한다. FLC의 최적설계를 위하여 본 연구에서 제안된 방법의 효율성은 여러 가지 역사지진을 사용하여 계산된 동적응답을 기초로 하여 평가한다. 예제해석결과 제안된 방법은 적절한 퍼지규칙을 찾을 수 있고 GA로 최적화된 FLC는 수동제어기 뿐만 아니라 전문가의 지식에 기반한 FLC와 전통적인 준능동제어기보다 더 좋은 성능을 발휘한다.

하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방 (Flood Disaster Prediction and Prevention through Hybrid BigData Analysis)

  • 엄기열;이재현
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.99-109
    • /
    • 2023
  • 최근에 우리나라에서 뿐만 아니라, 세계 곳곳에서 태풍, 산불, 장마 등으로 인한 재해가 끊이지 않고 있고, 우리나라 태풍 및 호우로 인한 재산 피해액만 1조원이 넘고 있다. 이러한 재난으로 인해 많은 인명 및 물적 피해가 발생하고, 복구하는 데도 상당한 기간이 걸리며, 정부 예비비도 부족한 실정이다. 이러한 문제점들을 사전에 예방하고 효과적으로 대응하기 위해서는 우선 정확한 데이터를 실시간 수집하고 분석하는 작업이 필요하다. 그러나, 센서들이 위치한 환경, 통신 네트워크 및 수신 서버들의 상황에 따라 지연 및 데이터 손실 등이 발생할 수 있다. 따라서, 본 논문에서는 이러한 통신네트워크 상황에서도 분석을 정확하게 할 수 있는 2단계 하이브리드 상황 분석 및 예측 알고리즘을 제안한다. 1단계에서는 이기종의 다양한 센서로부터 강, 하천, 수위 및 경사지의 경사각 데이터를 수집/필터링/정제하여 빅데이터 DB에 저장하고, 인공지능 규칙기반 추론 알고리즘을 적용하여, 위기 경보 4단계를 판단한다. 강수량이 일정값 이상인데도 불구하고 1단계 결과가 관심 이하 단계에 있으면, 2단계 딥러닝 영상 분석을 수행한 후 최종 위기 경보단계를 결정한다.

우선순위 기반의 상황충돌 해석 조명제어시스템 구현 (An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority)

  • 서원일;권숙연;임재현
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.23-33
    • /
    • 2016
  • 현재의 스마트 조명은 센서를 통해 사용자의 행위와 위치를 판별한 후 현재 상황에 적합한 조명 환경이 서비스되도록 구성되어 있다. 이러한 센서 기반의 상황인식 기술은 현재까지 단일 사용자만을 고려할 뿐 여러 사용자들의 다양한 상황 발생과 충돌을 해석하기 위한 연구는 미흡하다. 기존 연구에서는 상황충돌을 해결하기 위한 방법론으로 퍼지이론 및 ReBa 등의 알고리즘을 사용해 왔다. 이는 사용자들이 위치한 공간을 여러 영역으로 구분한 후 각 구역별로 서비스를 제공함으로써 발생 가능한 상황충돌의 기회를 회피할 뿐 개인 선호도 기반의 상황충돌 해석이 가능한 맞춤형 서비스 유형으로 볼 수 없다. 본 논문에서는 여러 사용자에게 다양한 상황이 동시 발생되어 서비스 충돌에 직면할 때, 상황의 유형에 따라 부여된 우선순위를 기준으로 서비스를 결정하는 우선순위 기반 다중 상황충돌 해석이 가능한 LED 조명제어시스템을 제안한다. 본 연구에서는 주거환경을 'Living Room', 'Bed Room', 'Study Room', 'Kitchen', 'Bath Room'의 5개 구역으로 구분하고 여러 명의 사용자를 대상으로 각 구역 내에서 발생 가능한 상황들을 'exercising', 'doing makeup', 'reading', 'dining', 'entering' 등 총 20가지로 정의한다. 시스템은 온톨로지 기반 모델을 이용하여 사용자의 다양한 상황을 정의하고 규칙기반의 룰 및 추론엔진을 통해 사용자 중심의 조명환경을 서비스한다. 또한 동일 공간 및 동일 시점에 사용자들 간의 다양한 상황충돌 이슈를 해결하기 위해 사용자 집중력이 요구되는 상황을 최우선으로 정하고, 동일한 우선순위를 가진 상황일 경우 시각적 편안함을 차선으로 순위를 부여하여 충돌 발생 시 서비스 선택의 기준으로 활용한다.

시멘틱 컴퓨팅 기반의 동적 작업 스케줄링 모델 및 시뮬레이션 (Semantic Computing-based Dynamic Job Scheduling Model and Simulation)

  • 노창현;장성호;김태영;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제18권2호
    • /
    • pp.29-38
    • /
    • 2009
  • 이기종의 자원들로 이루어진 컴퓨팅 환경에서 효율적인 자원 활용과 대용량의 데이터를 고속으로 처리하기 위해서는 실시간으로 변화하는 자원의 상태에 따라 대처 할 수 있는 동적인 작업 스케줄링 모델이 필요하다. 현재 이기종의 자원들에게 작업을 어떻게 분배 및 할당 할 것인지에 대하여 많은 자원 평가 방법 및 휴리스틱 기법들이 연구되었으나 이러한 방법들은 표준언어를 사용하지 않기 때문에 시스템 호환 및 확장에 어려움이 많다. 또한 다양한 자원들의 상태가 실시간으로 동적으로 변화하기 때문에 기존 연구에서 제안한 방법으로는 효율적인 처리가 불가능하거나 자원의 상태 변화에 동적으로 대처할 수 없다. 본 논문은 이러한 기존 연구들의 문제에 대한 해결책으로 W3C에서 제정한 온톨로지 표준 언어인 OWL을 이용하여 자원 온톨로지를 구축함으로써 이기종의 자원 관리를 손쉽게 할 수 있으며, 자원의 동적인 변화에 따라 작업 스케줄링하는 방법을 지식기반의 다양한 규칙들로 정의하여 추론을 통해서 최적의 자원에게 작업을 할당하는 시멘틱 컴퓨팅 기반의 동적 작업 스케줄링 모델을 제안한다. 시뮬레이션 실험 결과는 본 논문에서 제안한 작업 스케줄링 모델이 기존 모델에 비하여 낮은 작업 손실과 높은 작업 처리율 및 짧은 응답시간을 제공함으로써 이기종의 자원들로 구성된 시스템 전반에 걸쳐 안정적이고 고속의 데이터 처리를 제공할 수 있다는 사실을 증명한다.

데이터마이닝 알고리즘의 분류 및 분석 (Classification and Analysis of Data Mining Algorithms)

  • 이정원;김호숙;최지영;김현희;용환승;이상호;박승수
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권3호
    • /
    • pp.279-300
    • /
    • 2001
  • 지식탐사 프로세스의 핵심적인 역할을 담당하는 데이터마이닝 단계에서는 여러 가지 목적에 따라 알고리즘을 선택하여 사용한다. 최근 통계, 비즈니스, 전자 상거래, 의학, 생물학 등의 분야에서 데이터마이닝 기술아 적극적으로 활용되고 있으며, 이를 위해 다양한 알고리즘들이 계속해서 연구.개발되고 있다. 그러나 시간이 지나면 이들 중 각 분야 별로 우수한 응용성을 보이는 알고리즘이나 방대한 양의 데이터를 다루는데 있어 좋은 성능을 보이는 몇몇 알고리즘만이 남게 될 것이며 또한 앞으로는 이러한 알고리즘들만을 선별하여 집중 연구할 필요가 있다. 따라서 본 논문에서는 데이터마이닝에 널리 사용되고 활발한 연구가 진행중인 알고리즘들 중에서 연관규칙(association rule), 클러스터링(clustering), 신경망(neural network), 결정트리(decision tree), 유전자 알고리즘(genetic algorithm), 베이지안 네트워크(bayesian network), 메모리 기반 추론(memory-based reasoning)등 7가지 카테고리에 속하는 알고리즘들을 선정하여 분류.분석하였다. 우선 각 알고리즘의 계통과 특성들을 분석하였고 이를 토대로 비교.분석을 위한 14가지의 분류 기준을 제시하였다. 이러한 분류 기준에 근거하여 세부 알고리즘들을 분석해 보고 비교 가능한 일부 알고리즘은 여러 특징과 성능을 중심으로 각각 최상의 알고리즘을 도출해 보았다. 본 연구 결과는 데이터마이닝 분야의 흔재된 알고리즘들을 분류.분석함으로써 마이닝 기술 적용시 사용자에게 알고리즘 선택의 지표를 제시할 수 있을 것이다.

  • PDF

플랜트 설비 문서로부터 설비사양 추출 및 유사설비 사양 교차 검증 접근법 (A Method for Extracting Equipment Specifications from Plant Documents and Cross-Validation Approach with Similar Equipment Specifications)

  • 이재현;최승언;서효원
    • 한국산업정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.55-68
    • /
    • 2024
  • 플랜트 엔지니어링 기업은 서로 다른 공종별 부서에서 플랜트 공정/설비/파이프/계장 등 각 관련 분야의 요구사항 문서를 작성하거나 참조하게 된다. 공정 관련 요구사항 문서는 공정에 대한 설명과 함께 이를 운영할 설비 또는 관련 시설의 요구사항들을 포함한다. 각 공종별 문서에 기술된 설비 또는 부품에 관련된 요구사항과 사양 정보는 문서의 작성자와 검토자들이 다르기 때문에 상호 간에 불일치가 발생할 가능성이 있다. 이 사항들에 대한 일치성을 확인하는 것은 전체 플랜트 설계 정보의 신뢰도를 높일 수 있다. 하지만, 문서의 양이 방대하고 서로 다른 문서들에 동일한 설비 부품에 대한 요구사항들이 일반 문장 형태로 흩어져 있기에 이를 사람이 추적하여 관리하는 것은 한계가 있다. 본 논문에서는 서로 다른 문서들 내에 기술된 요구사항 문장들을 분석하여 설비 또는 설비 부품과 관련된 요구사항 문장의 유사도를 계산하여 의미적으로 동일한 문장을 찾아내는 방법을 제안한다. 요구사항 문장의 유사도를 계산하기 위하여 의미적으로 요구사항의 중심이 되는 부품과 속성을 개체명 인식 방법을 활용하여 찾아내고, 찾아진 부품과 속성들의 유사도를 계산하여 두문장이 의미적으로 동일함을 판단하는 방법을 제안한다. 플랜트 현장에서 사용하는 문서의 문장들을 예제로 하여 제안하는 방법을 설명하고 실험 결과를 설명한다.

기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구 (A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm)

  • 신휴성;김동규;임민진;이규범;오영섭
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.95-107
    • /
    • 2017
  • 본 논문에서는 제도적으로 운영 중인 터널내 CCTV들로부터 실시간으로 들어오는 영상들을 최신 딥러닝 알고리즘을 이용, 학습시켜 다양한 조건의 터널환경에서 돌발 상황을 감지하고 그 돌발 상황의 종류들을 분류해 내는 시스템 개발을 위한 사전검토 연구를 수행하였다. 사전검토 연구를 위해, 2개의 도로현장의 교통류 CCTV영상 일부를 이용하여 가용한 전통적인 영상처리기법으로 영상내부로 집입하는 차량을 감지하고, 이동경로를 추적하여 일정 시간간격의 이동 차량의 좌표와 시간정보를 추출하고 학습자료를 구성하였다. 각 차량의 이동정보는 차선변경, 정차 등 6가지의 이벤트 정보와 연계된다. 차량 이동정보와 이벤트로 구성된 학습자료는 레질리언스(resilience) 기계학습 알고리즘을 이용하여 학습하였다. 2개의 은닉층을 설정하고, 각 은닉층의 노드수에 대한 9개의 은닉구조 모델을 설정하여 매개변수 연구를 수행하였다. 본 사전검토의 경우에는 첫 번째, 두 번째 은닉층 노드수가 각각 300개와 150개로 설정된 모델이 합리적으로 가장 추론정확도가 높은 것으로 평가되었다. 이로부터 일반화되기 매우 힘든 복잡한 교통류 상황을 기계학습을 이용하여 어떠한 사전 규칙설정 없이도 교통류의 특징들을 정확히 자동으로 감지할 수 있는 가능성을 보였다. 본 시스템은 시스템의 운용을 통해 지속적으로 교통류 영상과 이벤트 정보가 늘어난다면, 자동으로 그 시스템의 인지능력과 정확도가 자동으로 향상되는 효과도 기대할 수 있다.