• Title/Summary/Keyword: 귀납적 학습

Search Result 91, Processing Time 0.023 seconds

Teaching-Learning Method for Calculus Education with Maplet (Maplet을 이용한 미적분학 교수-학습 방법)

  • 한동숭
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.2
    • /
    • pp.71-85
    • /
    • 2003
  • In this paper we study the usefulness of Maple in school calculus education. The use of computer and calculator is debated in many aspect in mathematics education. By the computer visualization of mathematical image and proper use of computer we can teach inductively and intuitively the mathematical concept and give rise to the students' interest. Maple is very popular in college but is not in middle school because of language. Maple application which is made by Maplet is very useful multimedia teaching-learning tools. We introduce the use of Maplet and some application of the calculus course which we made.

  • PDF

A study on environmental adaptation and expansion of intelligent agent (지능형 에이전트의 환경 적응성 및 확장성)

  • Baek, Hae-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.795-802
    • /
    • 2003
  • To live autonomously, intelligent agents such as robots or virtual characters need ability that recognizes given environment, and learns and chooses adaptive actions. So, we propose an action selection/learning mechanism in intelligent agents. The proposed mechanism employs a hybrid system which integrates a behavior-based method using the reinforcement learning and a cognitive-based method using the symbolic learning. The characteristics of our mechanism are as follows. First, because it learns adaptive actions about environment using reinforcement learning, our agents have flexibility about environmental changes. Second, because it learns environmental factors for the agent's goals using inductive machine learning and association rules, the agent learns and selects appropriate actions faster in given surrounding and more efficiently in extended surroundings. Third, in implementing the intelligent agents, we considers only the recognized states which are found by a state detector rather than by all states. Because this method consider only necessary states, we can reduce the space of memory. And because it represents and processes new states dynamically, we can cope with the change of environment spontaneously.

Students' attitudes toward learning proofs and learning proofs with GSP (증명학습에 대한 학생들의 성향과 GSP를 활용한 증명학습)

  • Han, Hye-Suk;Shin, Hyun-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.2
    • /
    • pp.299-314
    • /
    • 2008
  • The purposes of this study were to investigate what attitudes students have toward learning proofs and what difficulties they have in learning proofs, and to examine how the use of dynamic geometry software, the Geometer's Sketchpad, helps students' proof learning. The study involved 117 9th graders in 2 high schools. According to questionnaire data, over 50 percent of the total respondents(116) indicated negative attitudes toward learning proofs, on the other hand, only 16 percent of the total respondents indicated positive attitudes toward the learning. Memorizing and remembering many kinds of theorems, definitions, and postulates to use in proving statements was the most difficult part in learning proofs, which the largest proportion of the total respondents indicated. The study found that the use of the Geometer's Sketchpad played positive roles in developing students' understanding of proofs and stimulating students' interests in learning proofs.

  • PDF

A Study on the Teaching Strategies of Mathematical Principles and Rules by the Inductive Reasoning (귀납 추론을 통한 수학적 원리.법칙 지도 방안에 관한 고찰)

  • Nam, Seung-In
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.3
    • /
    • pp.641-654
    • /
    • 2011
  • In order to grow students' rational and creative problem-solving ability which is one of the primary goals in mathematics education. students' proper understanding of mathematical concepts, principles, and rules must be backed up as its foundational basis. For the relevant teaching strategies. National Mathematics Curriculum advises that students should be allowed to discover and justify the concepts, principles, and rules by themselves not only through the concrete hands-on activities but also through inquiry-based activities based on the learning topics experienced from the diverse phenomena in their surroundings. Hereby, this paper, firstly, looks into both the meaning and the inductive reasoning process of mathematical principles and rules, secondly, suggest "learning through discovery teaching method" for the proper teaching of the mathematical principles and rules recommended by the National Curriculum, and, thirdly, examines the possible discovery-led teaching strategies using inductive methods with the related matters to be attended to.

  • PDF

An N-version Learning Approach to Enhance the Prediction Accuracy of Classification Systems in Genetics-based Learning Environments (유전학 기반 학습 환경하에서 분류 시스템의 성능 향상을 위한 엔-버전 학습법)

  • Kim, Yeong-Jun;Hong, Cheol-Ui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1841-1848
    • /
    • 1999
  • DELVAUX is a genetics-based inductive learning system that learns a rule-set, which consists of Bayesian classification rules, from sets of examples for classification tasks. One problem that DELVAUX faces in the rule-set learning process is that, occasionally, the learning process ends with a local optimum without finding the best rule-set. Another problem is that, occasionally, the learning process ends with a rule-set that performs well for the training examples but not for the unknown testing examples. This paper describes efforts to alleviate these two problems centering on the N-version learning approach, in which multiple rule-sets are learning and a classification system is constructed with those learned rule-sets to improve the overall performance of a classification system. For the implementation of the N-version learning approach, we propose a decision-making scheme that can draw a decision using multiple rule-sets and a genetic algorithm approach to find a good combination of rule-sets from a set of learned rule-sets. We also present empirical results that evaluate the effect of the N-version learning approach in the DELVAUX learning environment.

  • PDF

Secondary Science Teachers' PCK Components and Subcomponents Specific to the Learning Environment in an Online-offline Mixed Learning Environment (온-오프라인 혼합 학습환경에서 중등과학교사의 학습환경 특이적인 PCK 요소 및 하위요소)

  • Jisu, Kim;Aeran, Choi
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.6
    • /
    • pp.472-492
    • /
    • 2022
  • The purpose of this study was to investigate secondary science teachers' PCK components and subcomponents that are specific to online and offline learning environment. Data collection consisted of survey, class observation, and individual interviews of twelve science teachers. This study used a theoretical framework of PCK for deductive data analysis and articulated codes and themes through the following inductive analysis. Data analysis revealed that each of PCK components showed different specificity to the online and offline learning environment. And subcomponents of each PCK component were different according to the specificity of the online and offline learning environment. Teaching orientation toward science had a specific orientation for the online learning environment, i.e., 'learning science concept' and 'lecture centered instruction.' Knowledge of the science curriculum had online-offline mixed learning environment specific knowledge, i.e., 'reorganization of curriculum' and online learning environment specific knowledge, i.e., 'development of learning goal' and 'science curricular materials.' Knowledge of science teaching strategies had online learning environment specific knowledge, i.e., 'topic-specific strategy', 'subject-specific strategy', and 'interaction strategy' and COVID-19 offline learning environment specific knowledge, i.e., 'topic-specific strategy' and 'interaction strategy'. Knowledge of student science understanding had online learning environment specific knowledge, i.e., 'student preconception', 'student learning difficulty', 'student motivation and interest', and 'student diversity' and COVID-19 offline learning environment specific knowledge, i.e., student learning difficulty'. Knowledge of science assessment had online-offline mixed learning environment specific knowledge and online learning environment specific knowledge, i.e., assessment contents and assessment methods for each.

The State Attribute and Grade Influence Structure for the RC Bridge Deck Slabs by Information Entropy (정보 엔트로피에 의한 RC 교량 상판의 상태속성 및 등급 영향 구조 분석)

  • Hwang, Jin-Ha;Park, Jong-Hoi;An, Seoung-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.61-71
    • /
    • 2010
  • The attributes related to the health condition of RC deck slabs are analyzed to help us identify and rate the safety level of the bridges in this study. According to the related reports the state assessment for the outward aspects of bridges is the important and critical part for rating the overall structural safety. In this respect, the careful identification for the various state attributes make the field inspection and structural diagnosis very effective. This study analyzes the influence of the state attributes on evaluation classes and the relationship of them by the inductive reasoning, which raise the understanding and performance for evaluation work, and support the logical approach for the state assessment. ID3 algorithm applied to the case set which is constructed from the field reports indicates the main attributes and the precedence governing the assessment, and derives the decision hierarchy for the state assessment.

Exploration on Teaching and Learning Strategies through Analyzing Cases of Foreign Engineering Education (해외 공학교육 사례분석을 통한 교수학습 전략 탐색)

  • Kwon, Sung-Ho;Shin, Dong-Wook;Kang, Kyung-Hee
    • Journal of Engineering Education Research
    • /
    • v.11 no.3
    • /
    • pp.12-23
    • /
    • 2008
  • The purpose of this study is to explore teaching and learning strategies through analyzing cases of foreign engineering education. With the analysis criteria composed of engineering education model, teaching and learning method, evaluation strategy, and technology supporting strategy, 10 foreign colleges of engineering in 5 countries were examined and analyzed. Teaching and learning strategies deduced from analysis state as follows. First of all, it need to develop engineering education models that reform should be made in systematic approach to teaching and learning, workplaces and laboratories, evaluation, technology support, etc. Secondly, the strategy for teaching and learning recommends supporting student directed learning, active learning participation, and collaboration learning by inductive learning strategies such as problem based learning, inquiry learning, project based learning, studio based learning, and blended learning. Thirdly, the evaluation strategy suggests that evaluation should be made to reflect students' learning and facilitate continuous learning based current learning results while it is necessary to build up a whole evaluation system. Finally, it is the educational technology approach for systematic engineering education that is required considering that many foreign colleges of engineering have reformed engineering education through technology supporting systems and are maximizing research and education in connection with other universities. This study is expected to contribute as preliminary data in developing further teaching and learning models and strategies for nurturing engineering students.

A GA-based Inductive Learning System for Extracting the PROSPECTOR`s Classification Rules (프러스펙터의 분류 규칙 습득을 위한 유전자 알고리즘 기반 귀납적 학습 시스템)

  • Kim, Yeong-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.822-832
    • /
    • 2001
  • We have implemented an inductive learning system that learns PROSPECTOR-rule-style classification rules from sets of examples. In our a approach, a genetic algorithm is used in which a population consists of rule-sets and rule-sets generate offspring through the exchange of rules relying on genetic operators such as crossover, mutation, and inversion operators. In this paper, we describe our learning environment centering on the syntactic structure and meaning of classification rules, the structure of a population, and the implementation of genetic operators. We also present a method to evaluate the performance of rules and a heuristic approach to generate rules, which are developed to implement mutation operators more efficiently. Moreover, a method to construct a classification system using multiple learned rule-sets to enhance the performance of a classification system is also explained. The performance of our learning system is compared with other learning algorithms, such as neural networks and decision tree algorithms, using various data sets.

  • PDF

Analysis on the Types of Mathematically Gifted Students' Justification on the Tasks of Figure Division (도형의 최대 분할 과제에서 초등학교 수학 영재들이 보여주는 정당화의 유형 분석)

  • Song Sang-Hun;Heo Ji-Yeon;Yim Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.1
    • /
    • pp.79-94
    • /
    • 2006
  • The purpose of this study is to find out the characteristics of the types(levels) of justification which are appeared by elementary mathematically gifted students in solving the tasks of plane division and spatial division. Selecting 10 fifth or sixth graders from 3 different groups in terms of mathematical capability and letting them generalize and justify some patterns. This study analyzed their responses and identified their differences in justification strategy. This study shows that mathematically gifted students apply different types of justification, such as inductive, generic or formal justification. Upper and lower groups lie in the different justification types(levels). And mathematically gifted children, especially in the upper group, have the strong desire to justify the rules which they discover, requiring a deductive thinking by themselves. They try to think both deductively and logically, and consider this kind of thought very significant.

  • PDF