• Title/Summary/Keyword: 궤적 자료

Search Result 209, Processing Time 0.024 seconds

Changes of Time-Distance Accessibility by Year and Day in the Integrated Seoul Metropolitan Public Transportation Network (서울 대도시권 통합 대중 교통망에서 연도별 및 요일별 시간거리 접근도 변화)

  • Park, Jong Soo;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-349
    • /
    • 2018
  • This study analyzes the effect of the changes in traffic environments such as transportation speeds on the time-distance accessibility for the public transportation passengers. To do this, we use passenger transaction databases of the Seoul metropolitan public transportation system: one week for each of the three years (2011, 2013, and 2015). These big data contain the information about time and space on the traffic trajectories of every passenger. In this study, the time-distances of links between subway stations and bus stops of the public transportation system at each time are calculated based on the actual travel time extracted from the traffic-card transaction database. The changes in the time-distance accessibility of the integrated transportation network from the experimental results can be summarized in two aspects. First, the accessibility tends to decline as the year goes by. This is because the transportation network becomes more complicated and then the average moving speed of the vehicles is lowered. Second, the accessibility tends to increase on the weekend in the analysis of accessibility changes by day. This tendency is because the bus speeds on bus routes on the weekend are faster than other days. In order to analyze the accessibility changes, we illustrate graphs of the vehicle speeds and the numbers of passengers by year and day.

A Study on the Effects of the Trajectories in Self-Efficacy with their Life Satisfaction and Interpersonal Competence of Adults with Disabilities (성인 장애인의 자기효능감 변화 유형에 따른 삶의 만족도, 대인관계역량 차이)

  • Yeon, Eun Mo;Choi, Hyo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • The purpose of this study was to identify groups depending on the four years of changing trajectories in self-efficacy and its relationship with life satisfaction and interpersonal competence of adults with disabilities who were aged above 25. The 1st to 4th year of the second wave from Panel Survey of Employment for the Disabled (PSED) was used to identify the groups and explore their relationship with life satisfaction and interpersonal competence through growth mixture modeling. The results identified three latent classes according to changing trajectories in self-efficacy: a 'high level-increasing group', an 'average level-increasing group', and a 'low level-stable group'. These three groups showed different characteristics in life satisfaction and interpersonal competence. For example, life satisfaction for groups decreased from the 'high level-increasing group' to the 'low level-stable group' and interpersonal competence increased in both 'high level-increasing group' and 'average level-increasing group', whereas it was stabilized in the 'low level-stable group'. These findings suggest that the life satisfaction and interpersonal competence of adults with disabilities are associated with their self-efficacy.

Biomechanical Research Trends for Alpine Ski Analysis (알파인 스키 분석을 위한 운동역학 연구 동향)

  • Lee, Jusung;Moon, Jeheon;Kim, Jinhae;Hwang, Jinny;Kim, Hyeyoung
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.6
    • /
    • pp.293-308
    • /
    • 2018
  • This study was carried out to investigate the current trends in skiing-related research from existing literature in the field of kinematics, measurement sensor and computer simulation. In the field of kinematics, research is being conducted on the mechanism of ski turn, posture analysis according to the grade and skill level of skiers, friction force of ski and snow, and air resistance. In the field of measurement sensor and computer simulation, researches are being conducted for researching and developing equipment using IMU sensor and GPS. The results of this study are as follows. First, beyond the limits of the existing kinematic analysis, it is necessary to develop measurement equipment that can analyze the entire skiing area and can be deployed with ease at the sports scene. Second, research on the accuracy of information obtained using measurement sensors and various analysis techniques based on these measures should be carried out continuously to provide data that can help the sports scene. Third, it is necessary to use computer simulation methods to clarify the injury mechanism and discover ways to prevent injuries related to skiing. Fourth, it is necessary to provide optimized ski trajectory algorithm by developing 3D ski model using computer simulation and comparing with actual skiing data.

Kinematical Analysis of Woman Javelin Throwing (창던지기 동작의 kinematic적 특성분석)

  • Lee, Jong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.345-359
    • /
    • 2002
  • The purpose of the study was to provide the fundamental data to instruct athletes through the analysis athletes' movement in javelin. Three athletes in the level of national representative were participated in this study. The study analyzed kinematic variables(lead foot and releasing javelin) through 3-D analysis and obtained the following results. 1. During withdrawal, it is important to maintain of running horizontal velocity. 2. It was showed that throng average height was $84{\pm}3.3%$ and javelin adequative degree, Among the athletes, $S_2$ who had the best record was released the javelin with the fast velocity, but throw the javelin with the less releasing velocity. 3. $S_2$ released after lead foot were completely landed and therefore it is no problem in a kinematic aspect. However, $S_1$ angle was too small. it caused increase of release velocity to be prevented. 4. $S_2$ showing the best result indicated shorter in duration time. Generally, the shorter duration time in release phase showed the longer release distance. Especially $S_1$ and $S_3$ showing the worse result indicated the longer duration time in preparatory phase, causing the breakup of force. Therefore to improve the record, it should be decreased the duration time in preparatory phase. 5. Compared with $S_1$ and $S_3$, $S_2$ showing the best record indicated the higher velocity in center of mass, trunk, upper arm, lower arm and hand That is the higher velocity of upper arm at release leaded the better velocity transfer from upper arm to following lower arm and hand, these action should be considered to be helpful of better record. According to the above conclusion, when the athletic leaders cauch athletes, they should focus on maintaining knee angle, upper body and hip angle in a previous stage of release and throwing angle, throwing height, throwing velocity in a release stage.

KOREAN MARS MISSION DESIGN USING KSLV-III (KSLV-III를 이용한 한국형 화성 탐사 임무의 설계)

  • Song, Young-Joo;Yoo, Sung-Moon;Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.355-372
    • /
    • 2006
  • Mission opportunities and trajectory characteristics for the future Korean Mars mission have designed and analyzed using KSIV-III(Korea Space Launch Vehicle-III). Korea's first space center, 'NARO space center' is selected as a launch site. For launch opportunities, year 2033 is investigated under considering the date of space center's completion with KSLV series development status. Optimal magnitude of various maneuvers, Trans Mars Injection (TMI) maneuver, Trajectory Correction Maneuver (TCM), Mars Orbit Insertion (MOI) maneuver and Orbit Trim Maneuver(OTM), which are required during the every Mars mission phases are computed with the formulation of nonlinear optimization problems using NPSOL software. Finally, mass budgets for upper stage (launcher for KSIV-III and spacecraft are derived using various optimized maneuver magnitudes. For results, daily launch window from NARO space center for successful Korean Mars mission is avaliable for next 27 minutes starting from Apr. 16. 2033. 12:17:26 (UTC). Maximum spacecraft gross mass which can delivered to Mars is about 206kg, with propellant mass of 109kg and structure mass of 97kg, when on board spacecraft thruster's Isp is assumed to have 290 sec. For upper stage, having structure ratio of 0.15 and Isp value of 280 sec, gross mass is about 1293kg with propellant mass of 1099kg and structure mass of 194kg. However, including 10% margins to computed optimal maneuver values, spacecraft gross mass is reduced to about 148kg with upper stage's mass of 1352kg. This work will give various insights, requiring performances to developing of KSIV-III and spacecraft design for future Korean Mars missions.

IMAGING SIMULATIONS FOR THE KOREAN VLBI NETWORK(KVN) (한국우주전파관측망(KVN)의 영상모의실험)

  • Jung, Tae-Hyun;Rhee, Myung-Hyun;Roh, Duk-Gyoo;Kim, Hyun-Goo;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2005
  • The Korean VLBI Network (KVN) will open a new field of research in astronomy, geodesy and earth science using the newest three Elm radio telescopes. This will expand our ability to look at the Universe in the millimeter regime. Imaging capability of radio interferometry is highly dependent upon the antenna configuration, source size, declination and the shape of target. In this paper, imaging simulations are carried out with the KVN system configuration. Five test images were used which were a point source, multi-point sources, a uniform sphere with two different sizes compared to the synthesis beam of the KVN and a Very Large Array (VLA) image of Cygnus A. The declination for the full time simulation was set as +60 degrees and the observation time range was -6 to +6 hours around transit. Simulations have been done at 22GHz, one of the KVN observation frequency. All these simulations and data reductions have been run with the Astronomical Image Processing System (AIPS) software package. As the KVN array has a resolution of about 6 mas (milli arcsecond) at 220Hz, in case of model source being approximately the beam size or smaller, the ratio of peak intensity over RMS shows about 10000:1 and 5000:1. The other case in which model source is larger than the beam size, this ratio shows very low range of about 115:1 and 34:1. This is due to the lack of short baselines and the small number of antenna. We compare the coordinates of the model images with those of the cleaned images. The result shows mostly perfect correspondence except in the case of the 12mas uniform sphere. Therefore, the main astronomical targets for the KVN will be the compact sources and the KVN will have an excellent performance in the astrometry for these sources.

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Suppression of Radar Clutter by CFAR - (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 - CFAR에 의한 레이더 잡음 억제 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.347-357
    • /
    • 2003
  • This paper describes on the suppression of sea clutter on marine radar display using a cell-averaging CFAR(constant false alarm rate) technique, and on the analysis of radar echo signal data in relation to the estimation of ARPA functions and the detection of the shadow effect in clutter returns. The echo signal was measured using a X -band radar, that is located on the Pukyong National University, with a horizontal beamwidth of $$3.9^{\circ}$$, a vertical beamwidth of $20^{\circ}$, pulsewidth of $0.8 {\mu}s$ and a transmitted peak power of 4 ㎾ The suppression performance of sea clutter was investigated for the probability of false alarm between $l0-^0.25;and; 10^-1.0$. Also the performance of cell averaging CFAR was compared with that of ideal fixed threshold. The motion vectors and trajectory of ships was extracted and the shadow effect in clutter returns was analyzed. The results obtained are summarized as follows;1. The ARPA plotting results and motion vectors for acquired targets extracted by analyzing the echo signal data were displayed on the PC based radar system and the continuous trajectory of ships was tracked in real time. 2. To suppress the sea clutter under noisy environment, a cell averaging CFAR processor having total CFAR window of 47 samples(20+20 reference cells, 3+3 guard cells and the cell under test) was designed. On a particular data set acquired at Suyong Man, Busan, Korea, when the probability of false alarm applied to the designed cell averaging CFAR processor was 10$^{-0}$.75/ the suppression performance of radar clutter was significantly improved. The results obtained suggest that the designed cell averaging CFAR processor was very effective in uniform clutter environments. 3. It is concluded that the cell averaging CF AR may be able to give a considerable improvement in suppression performance of uniform sea clutter compared to the ideal fixed threshold. 4. The effective height of target, that was estimated by analyzing the shadow effect in clutter returns for a number of range bins behind the target as seen from the radar antenna, was approximately 1.2 m and the information for this height can be used to extract the shape parameter of tracked target..

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF