• Title/Summary/Keyword: 궤적생성

Search Result 294, Processing Time 0.024 seconds

Control of powered descent phase for a Lunar lander using PID controller (PID 제어기를 이용한 달착륙선의 powered descent phase 유도제어)

  • Jo, Sung-Jin;Min, Chan-Oh;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-415
    • /
    • 2011
  • The moon landing is composed of the de-orbit descent phase, powered descent phase, and the powered descent phase is divide into 3-sub phase of the braking, approach, final landing phase. In this paper, the lunar lander perform landing control using 3-sub phase of optimal trajectory. First, generate the reference trajectory using gauss pseudo-spectral method. Thereafter generate PID controller using altitude and velocity error in each direction. Finally the lunar lander landing system constitute using the Simulink of Matlab, and perform simulation.

Facial Animation Generation by Korean Text Input (한글 문자 입력에 따른 얼굴 에니메이션)

  • Kim, Tae-Eun;Park, You-Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.2
    • /
    • pp.116-122
    • /
    • 2009
  • In this paper, we propose a new method which generates the trajectory of the mouth shape for the characters by the user inputs. It is based on the character at a basis syllable and can be suitable to the mouth shape generation. In this paper, we understand the principle of the Korean language creation and find the similarity for the form of the mouth shape and select it as a basic syllable. We also consider the articulation of this phoneme for it and create a new mouth shape trajectory and apply at face of an 3D avatar.

  • PDF

Performance Improvement based on the Teaching Control for Sweeping Robot (연마로봇의 교시기반 제어에 의한 성능개선)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1525-1530
    • /
    • 2014
  • In this research, we describe teaching based sweeping control for grinder robot has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Teaching method is used for grinder robots operations because of their position accuracy, path accuracy, and machining reaction force. A grinder robot for two-dimensional iron plate was developed on the basis of an force sensor based teaching method. An automatic-path-generation method and experimental results using specific points was adopted to reduce the number of teaching points and time. And also, in order to determine the proper machining conditions, various machining conditions such as grinder-wheel rotation speed and robot moving speed, were evaluated.

3D Human Motion Control System using Visual Script (시각 스크립트 기반 3차원 인체 동작 제어 시스템)

  • Cha, Gyeong-Ae;Kim, Sang-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.5
    • /
    • pp.536-542
    • /
    • 2000
  • This paper proposes Visual Script Language which can direct a type of motion to 3D human model and create by dragging gesture like as we can express a certain meaning with hand gestures. Traditional motion control technique of articulated figures such as human needs a complex task that draws on highly developed human skills. So it will reduce the amount of motion specification to provide the motion control method that allow users to describe characters' motion at the higher level abstraction. Visual script is the visual gestures to direct various human motions, so users can express the spatial attributes of a motion such as the path of moving with high-level concepts if they use visual script. And we can show that it is possible to control the motion of human model directly and intuitively by development of 3D human motion control system based on visual script.

  • PDF

Implementation of Smooth Moving Sound Effect in 3D Sound Generation (입체음향 생성에 있어서 자연스러운 이동음 효과의 구현)

  • Myung, Hyun;Kim, Ki-Hong;Kim, Ki-Ho;Kim, Yong-Wan;Kim, Hyun-Bin;Kim, Poong-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.699-705
    • /
    • 2001
  • As it became possible to generate 3D sound on a PC environment due to the advances in computing performance and digital signal processing technology, 3D sound technology gains its focus in the multimedia area Specifically a two-channel based 3D sound technology is being studied by many researchers because of its space efficiency and economical structure. While the positional sound effect is simple in its implementation, the moving sound effect has many problems to be resolved as there are only discrete measured point of HRTF database. In this paper, we propose the method of generating smooth moving sound in a two-channel based 3D sound technique with respect to generating smooth trajectory, and the interpolation method of discrete measured HRTF data. We perform the tests in the PC environment and prove the utility of the proposed method.

  • PDF

Trajectory Optimization and the Control of a Re-entry Vehicle during TAEM Phase using Artificial Neural Network (재진입 비행체의 TAEM 구간 최적궤적 설계와 인공신경망을 이용한 제어)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Min, Chan-Oh;Cho, Sung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.350-358
    • /
    • 2009
  • This paper describes a result of the guidance and control for re-entry vehicle during TAEM phase. TAEM phase (Terminal Aerial Energy Management phase) has many conditions, such as density, velocity, and so on. Under these conditions, we have optimized trajectory and other states for guidance in TAEM phase. The optimized states consist of 7 variables, down-range, cross range, altitude, velocity, flight path angle, vehicle's azimuth and flight range. We obtained the optimized reference trajectory by DIDO tool, and used feedback linearization with neural network for control re-entry vehicle. By back propagation algorithm, vehicle dynamics is approximated to real one. New command can be decided using the approximated dynamics, delayed command input and plant output, NARMA-L2. The result by this control law shows a good performance of tracking onto the reference trajectory.

Stroke Based Hand Gesture Recognition by Analyzing a Trajectory of Polhemus Sensor (Polhemus 센서의 궤적 정보 해석을 이용한 스트로크 기반의 손 제스처 인식)

  • Kim, In-Cheol;Lee, Nam-Ho;Lee, Yong-Bum;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.46-53
    • /
    • 1999
  • We have developed glove based hand gesture recognition system for recognizing 3D gesture of operators in remote work environment. Polhemus sensor attached to the PinchGlove is employed to obtain the sequence of 3D positions of a hand trajectory. These 3D data are then encoded as the input to our recognition system. We propose the use of the strokes to be modeled by HMMs as basic units. The gesture models are constructed by concatenating stroke HMMs and thereby the HMMs for the newly defined gestures can be created without retraining their parameters. Thus, by using stroke models rather than gesture models, we can raise the system extensibility. The experiment results for 16 different gestures show that our stroke based composite HMM performs better than the conventional gesture based HMM.

  • PDF

Small Target Detection Using 3-dimensional Bilateral Filter (3차원 양방향 필터를 이용한 소형 표적 검출)

  • Bae, Tae-Wuk
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.746-755
    • /
    • 2013
  • This paper presents a three dimensional bilateral filter detecting target trajectory, extracting spatial target information using two dimensional bilateral filter and temporal target information using one dimensional bilateral filter. In order to discriminate edge pixel with flat background and target region spatially and temporally, spatial and temporal variance are used for an image and temporal profile. With this procedure, background and background profile are predicted without original target through two dimensional and one dimensional bilateral filter. Finally, using spatially predicted background and temporally predicted background profile, small target can be detected. For comparison of existing target detection methods and the proposed method, the receiver operating characteristics (ROC) is used in experimental results. Experimental results show that the proposed method has superior target detection rate and lower false alarm rate.

ViStoryNet: Neural Networks with Successive Event Order Embedding and BiLSTMs for Video Story Regeneration (ViStoryNet: 비디오 스토리 재현을 위한 연속 이벤트 임베딩 및 BiLSTM 기반 신경망)

  • Heo, Min-Oh;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.138-144
    • /
    • 2018
  • A video is a vivid medium similar to human's visual-linguistic experiences, since it can inculcate a sequence of situations, actions or dialogues that can be told as a story. In this study, we propose story learning/regeneration frameworks from videos with successive event order supervision for contextual coherence. The supervision induces each episode to have a form of trajectory in the latent space, which constructs a composite representation of ordering and semantics. In this study, we incorporated the use of kids videos as a training data. Some of the advantages associated with the kids videos include omnibus style, simple/explicit storyline in short, chronological narrative order, and relatively limited number of characters and spatial environments. We build the encoder-decoder structure with successive event order embedding, and train bi-directional LSTMs as sequence models considering multi-step sequence prediction. Using a series of approximately 200 episodes of kids videos named 'Pororo the Little Penguin', we give empirical results for story regeneration tasks and SEOE. In addition, each episode shows a trajectory-like shape on the latent space of the model, which gives the geometric information for the sequence models.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.