• Title/Summary/Keyword: 궤도하부노반

Search Result 23, Processing Time 0.02 seconds

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Appropriateness Evaluation of Reinforced Subgrade beneath Concrete Track through Numerical Analysis (수치해석을 통한 콘크리트궤도 하부 강화노반의 적정성 검토)

  • Lee Su-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.680-685
    • /
    • 2005
  • An active application of concrete track is being expected for the future constructions of Korean railroad. For the successful concrete track construction in earthwork areas, proper reinforced subgrades, which effectively distribute train loads to subground, should be installed. In this paper, behaviors of concrete track on the reinforced subgrade with the standard stiffness and depth were investigated through numerical analyses. The appropriateness of the reinforced subgade was evaluated by analyzing the distributions of the settlements and vertical stress beneath the concrete slab.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.

Analysis of Shear Modulus(G)-Shear Strain(γ)-Degree of Saturation(S) Characteristics of Compacted Subgrade Soil used as Railway Trackbed (다짐된 궤도 흙노반 재료의 전단탄성계수(G)-전단변형률(γ)-포화도(S) 관계특성 분석)

  • Choi, Chan Yong;Lee, Seong Hyeok;Lim, Yu Jin;Kim, Dae Sung;Park, Jae Beom
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.127-138
    • /
    • 2015
  • It is important to evaluate the stiffness characteristics of compacted subgrade soil under track that is loaded dynamically. Using a mid-size Resonant Column test apparatus, normalized shear modulus and shear modulus variation with changing of confining pressure were investigated with change of degree of saturation (DOS). From an analysis of the test results, it was verified that the maximum shear modulus decreased with increases of DOS. However, normalized shear modulus increased with increases of DOS. Using the test results, a relation of G~${\gamma}$~DOS can be constructed and characterized. In the future, by performing tests with soils used as trackbed broadly in the field, a prediction model for DOS~G~${\gamma}$ can be proposed.

Roadbed Bearing Capacity Associated with Estimated Impact Factor in Conventional and Improved Turnout System (기존 및 개량 분기기 충격계수 산정에 따른 노반 지지력)

  • Jeon, Sang-Soo;Eum, Ki-Young;Kim, Jae-Min
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.582-588
    • /
    • 2007
  • Since the turnout system in railroad restricts the train speed, the KNR (Korean National Railroad) provides the specification for the speed (130km/h) of the train when the train passes the turnout system. Therefore, the turnout system in pre-existing railroad is necessary to be improved to speed-up for the train. In this study, the dynamic wheel-load field tests have been performed to evaluate the track performance and the roadbed bearing capacity has been examined using numerical analysis at the turnout crossing in the conventional and improved turnout system. The impact factor is estimated using the data sets achieved from the dynamic wheel-load field tests in the conventional and improved turnout system. The stress acting on the roadbed for the improved turnout system is substantially decreased compare to that for the conventional turnout system.

Development of Prefabricated Slab Panel for Asphalt Concrete Track (아스팔트 콘크리트 궤도용 사전제작형 슬래브 패널 개발)

  • Baek, In-Hyuk;Lee, Seong-Hyeok;Shin, Eung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • Slab panels are very important to develop asphalt concrete (AC) track for minimizing the roadbed stress due to the train load and reducing the plastic deformation of infrared-sensitive AC. In this study, the slab panel for AC track was developed through the shape design and the indoor performance test and its structural integrity has been investigated through the finite element analysis under the flexural tensile stress and the design moment according to various static load combination by KRL-2012 standard train load model and KR-C code. In order to verify the suitability of the slab panel for AC track, static bending strength test and dynamic bending strength test were performed according to EN 13230-2. Results show that the slab panel for AC track satisfies all the performance standards required by European standards such as crack loads and crack extension.

Settlement of Embankment and Foundation for Concrete Track of Gyungbu High Speed Railroad (II) (경부고속철도 콘크리트궤도 토공 및 원지반 침하 (II))

  • Kim, Dae-Sang;Park, Seong-Yong;Shin, Min-Ho;Lee, Hyeon-Jung;Kim, Hyun-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.457-462
    • /
    • 2007
  • An application of concrete track is being activity processed for the construction of Korean railroad. The concrete track has an advantage to decrease the maintenance fee, but is very difficult to control the settlement of ground and embankment consisting of substructure of concrete track below the allowable settlement level. This is the reason why the measurement and evaluation of both ground and embankment settlement before the installation of the concrete track is very important. One ground, a lower subgrade, and five surface settlements are measured to understand the settlement behavior of ground and embankment settlement. The period to measure settlements was more than 1 year after the completion of embankment. In this test site, ground settlement was over during the construction of embankment, but the embankment settlement are being continuously proceeded after the completion of embankment. The settlement velocity gradually is slowing down as time goes by. This paper also analysed the reasons of abrupt settlement increase and concluded that the rainfall was one of the important reason to increase settlement rate.

Analysis of the Relationship between Concrete Slab Track Life and Secondary Compression Characteristics in Soft Clay (점토의 2차 압축특성과 콘크리트궤도 수명과의 상관성 분석)

  • Lee, Sang-Cheol;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • Concrete slab track was applied to the Gyeoungbu High Speed Railroad step 2 and the Honam High Speed Railroad. Concrete slab track incurs higher construction cost and lower maintenance cost than existing gravel track. For these reasons, the use of concrete slab track has increased in Korea. The biggest problem in the use of concrete slab track is repairing damage from settlement that can occur while trains are in service. High speed railroad design standards require allowable residual settlement of concrete slab track of less than 25mm. In order to satisfy the requirement of long term stability of concrete slab track, it is necessary to manage the secondary compression settlement within the allowable residual settlement. This study is to evaluate the secondary compression settlement with the variation of the secondary compression index, thickness of soft ground, and concrete slab track life. Statistical analysis is performed to determine the probability of distribution of areas where serious problems will be caused after the concrete slab track is constructed.