• Title/Summary/Keyword: 궤도시뮬레이션

Search Result 222, Processing Time 0.026 seconds

Mission-based Operational Orbit Design for Sun-synchronous Spacecraft (임무기반 태양동기궤도 운영궤도 설계에 관한 연구)

  • Lee, Ji-Marn;No, Tae-Soo;Jung, Ok-Chul;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.752-759
    • /
    • 2012
  • This paper presents a mission orbit design method for spacecraft which use the sun-synchronous and ground repeat orbits. In this work, we have proposed a new design procedure, "Nonlinear simulation-based numerical optimization technique" using the commercial S/W's such as STK (Satellite Tool kit) and Matlab, which are widely adopted S/W's in the area of orbital mechanics and engineering analysis. Inclusion of all the perturbation effects on the spacecraft not only can more precisely satisfy the mission requirements for sun-synchronicity and repeated ground track, and also operational requirements such as minimum change in the S/C local time, maximization of the contact time with a specified ground station, etc. can be appropriately considered. Design examples for LEO sun-synchronous mission are presented to demonstrate the usefulness of the proposed method in this paper.

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.

Station Collocation of Geostationary Spacecraft Via Direct Control of Relative Position (상대위치 직접 제어를 통한 정지궤도 위성의 Collocation에 관한 연구)

  • Lee, Jae-Gyu;No, Tae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.56-64
    • /
    • 2006
  • Station collocation of closely placed multiple GEO spacecraft is required to avoid the problem of collision risk, attitude sensor interference and/or occultation. This paper presents the method of obtaining the orbit correction scheme for collocating two GEO spacecraft within a small station-keeping box. The relative motion of each spacecraft with respect to the virtual geostationary satellite is precisely expressed in terms of power and trigonometry functions. This closed-form orbit propagator is used to define the constraint conditions which meet the requirements for the station collocation. Finally, the technique of constrained optimization is used to find the orbit maneuver sequence. Nonlinear simulations are performed and their results are compared with those of the classical method.

A Study on the Improvement for a Defect Diagnosis of Track Circuit on HSL (고속선 궤도회로 결함진단을 위한 개선방안 연구)

  • Park, Ki-Bum;Lee, Tae-Hoon;Lee, Gi-Chun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1656-1664
    • /
    • 2007
  • This paper introduces a study of improvement for a defect diagnosis of the UM71C track circuit using on HSL. The track circuit on HSL has long operation section. Therefore, when the worker maintain, many times and efforts are spent. So, periodically, we have operated a inspection car. However, we don't know exactly the state changed of the inspection data when track circuit has defect. Actually, We fixed a sample area within operation section on HSL and performed the simulations for short circuit current that is reflected characteristic impedance and propagation factor. We compared the measuring data with the result of the simulation. Using verified simulation program, we estimated inspection data as the malfunction number and the change of capacity of compensation capacitor. These study need to secure of the safety as the train operation. Also, It needs to make a criteria of analysis for the maintenance through comparison simulation data and inspection data.

  • PDF

Dynamic Analysis of A High Mobility Tracked Vehicle Using Compliant Track Link Model (유연성 궤도 모델을 사용한 고기동성 궤도차량의 동역학 해석)

  • 백운경;최진환;배대성
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1259-1266
    • /
    • 1999
  • The objective of this investigation is to develop a compliant track link model and apply this model to the multi-body dynamic analysis of high mobility tracked vehicles. Two major difficulties encountered in developing the compliant track models. The first one is that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution deals with high oscillatory signals resulting from the impulsive contact forces and stiff compliant elements to represent the joints between the track links. The second difficulty is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. This problem was sloved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios were tested for the high mobility tracked vehicle including accelaeration, high speed cruising, braking, and turning motion in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.

  • PDF

New Method for Station Keeping of Geostationary Spacecraft Using Relative Orbital Motion and Optimization Technique (상대 운동과 최적화 기법을 이용한 정지궤도 위치유지에 관한 연구)

  • Jung, Ok-Chul;No, Tae-Soo;Lee, Sang-Cherl;Yang, Koon-Ho;Choi, Seong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary spacecraft. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Results from the nonlinear simulation have been shown to support such concept.

Identification of Track Irregularity using Wavelet Transfer Function (웨이브렛 전달함수를 이용한 궤도틀림 식별)

  • Shin, Soo-Bong;Lee, Hyeung-Jin;Kim, Man-Cheol;Yoon, Seok-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • This paper presents a methodology for identifying track irregularity using a wavelet transfer function. An equivalent wavelet SISO (single-input single-output) transfer function is defined by the measured track geometry and the acceleration data measured at a bogie of a train. All the measured data with various sampling frequencies were rearranged according to the constant 25cm reference recording distance of the track recording vehicle used in the field. Before applying the wavelet transform, measured data were regressed by eliminating those out of the range. The inverse wavelet transfer function is also formulated to estimate track geometry. The closeness of the estimated track geometry to the actual one is evaluated by the coherence function and also by FRF (frequency response function). A track irregularity index is defined by comparing the variance of the estimation error from the intact condition and that from the current condition. A simulation study has been carried out to examine the proposed algorithm.