• Title/Summary/Keyword: 궤도시뮬레이션

Search Result 222, Processing Time 0.025 seconds

Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem (원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구)

  • Jung, Okchul;Ahn, Sangil;Chung, Daewon;Kim, Eunkyou;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.692-698
    • /
    • 2015
  • This paper represents a trajectory design and analysis technique which uses invariant manifolds of the circular restricted three body problem. Instead of the classical patched conic method based on 2-body problem, the equation of motion and dynamical behavior of spacecraft in the circular restricted 3-body problem are introduced, and the characteristics of Lyapunov orbits near libration points and their invariant manifolds are covered in this paper. The trajectories from/to Lyapunov orbits are numerically generated with invariant manifolds in the Earth-moon system. The trajectories in the Sun-Jupiter system are also analyzed with various initial conditions in the boundary surface. These methods can be effectively applied to interplanetary trajectory designs.

An Efficient Super Resolution Method for Time-Series Remotely Sensed Image (시계열 위성영상을 위한 효과적인 Super Resolution 기법)

  • Jung, Seung-Kyoon;Choi, Yun-Soo;Jung, Hyung-Sup
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.29-40
    • /
    • 2011
  • GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.

Design of Wireless Power Transmission Antennas for Railway High-Speed Transponder System (철도교통용 고속 트랜스폰더 시스템 무선전력전송 안테나 설계)

  • Lee, Jae-Ho;Park, Sungsoo;Kim, Seong Jin;Ahn, IL Yeup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2017
  • In railway systems, the exchange of information between running trains and wayside equipment is a very important role in various applications such as position detection and train control. Track circuits have been used as the medium for information transmission between trains and wayside. However, track circuits must be installed continuously along the track on the ground, resulting in an inevitable increase in installation and maintenance costs. One of the most promising solutions to reduce these costs is to mix continuous information transmission (via wireless communication) and discontinuous information transmission (via transponder). In this study, we designed antennas of railway high-speed transponder readers and tags for wireless power transmission, which can be used to transmit information from ground to high-speed trains with a maximum speed of 400km/h. We also verified system performance through computational simulation and prototyping.

Microwave Breakdown and High-Power Handling Capability of Circular Waveguide Cavity Filter (원통형 도파관 캐비티 필터의 마이크로파 방전과 고전력 취급 능력)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Jang, Jin-Baek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.80-85
    • /
    • 2017
  • In this paper, a mircrowave breakdown of X-band circular waveguide cavity filter, which occurred during ground test, was introduced, and electro-magnetic field simulation results to identify a root cause, and the analysis of possibility of its occurrence on orbit operation were presented. Filter modeling for simulation was conducted with a commercial tool (FEST3D), and electric fields inside the filter were monitored at the input of 1 W continuous wave. In our observation, strong electric field intensities were monitored on the tuning screws especially at the input of band-edge frequencies. The threshold power levels for the breakdown were also estimated and compared with the input power levels actually injected to the filter. From this estimation, we could figure out that the power exceeding the breakdown threshold was injected to the filter so that strong electric fields were generated and temperature increased high, and this became a root cause of the electrical short. Our further analysis showed that this kind of microwave breakdown is not likely to occur on orbit operation, and multipactor is expected not to occur at the input of band-edge frequencies. As a measure to prevent the microwave breakdown, we suggested to avoid the injection of band-edge frequencies and inject lower power levels to the filter.

STATION-KEEPING FOR COMS SATELLITE BY ANALYTIC METHODS (해석적인 방법을 사용한 통신해양기상위성의 위치유지)

  • Kim Young-Rok;Kim Hae-Yeon;Park Sang-Young;Lee Byoung-Sun;Park Jae-Woo;Choi Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-258
    • /
    • 2006
  • In this paper, an automation algorithm of analyzing and scheduling the station-keeping maneuver is presented for Communication, Ocean and Meteorological Satellite (COMS). The perturbation analysis for keeping the position of the geostationary satellite is performed by analytic methods. The east/west and north/south station-keeping maneuvers we simulated for COMS. Weekly east/west and biweekly north/south station-keeping maneuvers are investigated for a period of one year. Various station-keeping orbital parameters are analyzed. As the position of COMS is not yet decided at either $128.2^{\circ}E\;or\;116.0^{\circ}E$, both cases are simulated. For the case of $128.2^{\circ}E$, east/west station-keeping requires ${\Delta}V$ of 3.50m/s and north/south station-keeping requires ${\Delta}V$ of 52.71m/s for the year 2009. For the case of $116.0^{\circ}E,\;{\Delta}V$ of 3.86m/s and ${\Delta}V$ of 52.71m/s are required for east/west and north/south station-keeping, respectively. The results show that the station-keeping maneuver of COMS is more effective at $128.2^{\circ}E$.

A Study on High-Power Handling Capability of X-Band Circular Waveguide Cavity Filter (X-대역 원통형 도파관 캐비티 필터의 고전력 핸들링 능력 연구)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Lee, Pil-Yong;Jang, Jin-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • In this paper, we presented the result of the study on high-power handling capability of the X-band circular waveguide cavity filter configured at the output of high power amplifier(120 W) for geostationary satellites. The dual mode circular waveguide cavity filter with 6th order is selected and the physical model of the filter is designed after determination of the size of resonator from mode chart. Multipactor margin analysis is performed by the SEM method and the VMF method. The result shows that the VMF method predicts lower multipactor breakdown thresholds than the SEM method. Evaluating the multipactor margin obtained by the VMF method to ECSS criteria, we could decide to perform multipactor test. The multipactor test conducted in ESA facility shows that multipactor did not occur even until the RF power increased up to 540 W. In consequence, by both analysis and test, we could verify that the X-band circular waveguide cavity filter has the sufficient high-power handling capability to operate on orbit.

Study on a Spin Stabilization Technique Using a Spin Table (스핀테이블을 이용한 스핀안정화 기법 연구)

  • Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Seo, Sang-Hyeon;Kim, Kwang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • For an orbit transfer in a space exploration mission, a solid or liquid rocket booster is included at the last stage of the launch vehicle. During the orbit transfer, thrust misalignment can cause a severe orbit error. Three axis attitude control or spin stabilization can be implemented to minimize the error. Spin stabilization technique has advantages in structural simplicity and lightness. One of ways to apply the spin stabilization to the payload is to include a spin table system in the launch vehicle. In this paper, effect of the spin table system on separation dynamics of the payload is analyzed. Simple model of the spin table to mimic basic functions is designed and simulation environment is established with the model. Effect of the spin table is tested by evaluating separation dynamics of a payload with and without the spin table. Analysis on tolerance effect of separation spring constant on separation dynamics of a payload is conducted.

Roles of B-dot Controller and Failure Analysis for Dawn-dusk LEO Satellite (6시 저궤도 위성에서 B-dot 제어기 역할과 고장분석)

  • Rhee, Seung-Wu;Kim, Hong-Joong;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.200-209
    • /
    • 2013
  • In this paper, the types of B-dot controller and the review results of B-dot controller stability are summarized. Also, it is confirmed that B-dot controller is very useful and essential tool when a dawn-dusk low earth orbit(LEO) large satellite has especially to capture the Sun for a required power supply in a reliable way after anomaly and that its algorithm is very simple for on-board implementation. New physical interpretation of B-dot controller is presented as a result of extensive theoretical investigation introducing the concept of transient control torque and steady state control torque. Also, the failure effect analysis results of magnetic torquers as well as a simulation verification are included. And the design recommendation for optimal design is provided to cope with the failure of magnetic torquer. Nonlinear simulation results are included to justify its capability as well as its performance for an application to a dawn-dusk LEO large satellite.

Mission Design and Analysis based on SEM Angle by Using Variable Coast During 3.5 Earth-Moon Phasing Loop Transfer (Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석)

  • Choi, Su-Jin;Lee, Donghun;Lim, Seong-Bin;Choi, Suk-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • In order to analyze the overall characteristics of the lunar orbiter, the Variable Coast method, which can be launched everyday, is applied to the 3.5 phasing loop transfer trajectory. The mission scenario for the entire process from launching to entering the lunar orbit is set up and performed simulation by selecting the launch pad and launch vehicle. In particular, the SEM(Satellite-Earth-Moon) angle defined in Earth-Moon rotating frame is an important constraint to comprehensively evaluate the 3.5 phasing loop transfer trajectory. The simulation using SEM angle is analyzed from various viewpoints such as launch epoch, coast duration, perigee altitude and ${\Delta}V$ not only trans-lunar trajectory but lunar orbit insertions and the optimum SEM angle is suggested in this study. It is expected that this results will be helpful to evaluate the characteristics of the 3.5 phasing loop transfer trajectory according to the launch vehicle selection by comparison with Fixed Coast analysis results in the future.

Online Refocusing Algorithm Considering the Tilting Effect for a Small Satellite Camera (위성 카메라의 틸트 효과를 고려한 온라인 리포커싱 알고리즘)

  • Lee, Da Hyun;Hwang, Jai Hyuk;Hong, Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.64-74
    • /
    • 2018
  • Small high-resolution Earth observation satellites require precise optical alignment at the submicron level. However, misalignments can occur due to the influence of external factors during the launch and operation despite the sufficient alignment processes that take place before the launch. Thus, satellites need to realign their optical elements in orbit in what is known as a refocusing process to compensate for any misalignments. Refocusing algorithms developed for satellites have only considered de-space, which is the most sensitive factor with respect to image quality. However, the existing algorithms can cause correction error when inner and external forces generate tilt amount in an optical system. The present work suggests an improved online refocusing algorithm by considering the tilting effect for application in the case of a de-spaced and tilted optical system. In addition, the algorithm is considered to be efficient in terms of time and cost because it is designed to be used as an online method that does not require ground communication.