• Title/Summary/Keyword: 궤도결정정밀도

Search Result 106, Processing Time 0.025 seconds

Orbit Analysis for KOMPSAT-2 During LEOP and Mission Lifetime (아리랑위성 2호 초기운용 및 임무기간 중 궤도 분석)

  • Kim, Hae-Dong;Jung, Ok-Chul;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.914-924
    • /
    • 2010
  • In this paper, results on the orbit analysis for the KOMPSAT-2 satellite using a real orbit data during the LEOP and normal mission lifetime are presented. In particular, the preparation and performance of an orbit operations during the LEOP is emphasized and the effects of space environments (i.e., Solar activity) on orbit evolutions are investigated comparing to those of the KOMPSAT-1 satellite. The summarized results in this paper would be an important reference to improve the stability and effectiveness of satellite operations during the LEOP and normal mission lifetime in case of LEO satellites such as successors of KOMPSAT-2 (i.e., KOMPSAT-3, KOMPSAT-3A, KOMPSAT-5).

Geodetic Point Positioning using the GPS Csrrier Phase (GPS 반송파 위상을 이용한 측지학적인 절대위치 결정)

  • 강준묵;정용식;최종현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.181-188
    • /
    • 1996
  • Geodetic Satellite Positioning Techniques (NNSS, Transit, Doppler, VLBI, SLR etc.) still have much difficulty in surveying and necessity of point positions is being amplified in korea. Therefore some research institutes have being investigated point positioning using the GPS. In this study, 1 arranged the theory deal with point positioning using GPS carrier beat phase of dual frequency and estimated corrections of errors that be included in GPS observable. Also, 1 determined point position by the differencing scheme of GPS carrier phase, and analyzed the accuracy of point position. 1 suggested potentiality of geodetic point positioning using GPS carrier phase by comparing result of relative positioning with result of point positioning and analyzing result of network adjustment fixed any point position.

  • PDF

Mission Control System for KOMPSAT-2 Operations (다목적 실용위성2호 관제시스템 운용)

  • Jeong, Won-Chan;Lee, Byeong-Seon;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The Mission Control System for KOMPSAT-2 was developed by ETRI and is being operated at Satellite Control Center at KARI to monitor and control KOMPSAT-2 (KOrea Multi-Purpose Satellite) which was launched in July 28th, 2006. MCE provides the functions such as telemetry reception and processing, telecommand generation and transmission, satellite tracking and ranging, orbit prediction and determination, attitude maneuver planning, satellite simulation, etc. KOMPSAT-2 is the successor of KOMPSAT-1 which is an earth-observation satellite. KOMPSAT-2 has higher resolution image taking ability due to MSC (Multi Spectral Camera) payload in the satellite and precise orbit and attitude determination by Mission Control System. It can produce one meter resolution image compared to six meter resolution image by KOMPSAT-1.

  • PDF

DEEP SPACE NETWORK MEASUREMENT MODEL DEVELOPMENT FOR INTERPLANETARY MISSION (행성간 탐사를 위한 심우주 추적망 관측모델 개발)

  • Kim, Hae-Yeon;Park, Eun-Seo;Song, Young-Joo;Yoo, Sung-Moon;Rho, Kyung-Min;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Jun-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2004
  • The DSN(Deep Space Network) measurement model for interplanetary navigations which is essential for precise orbit determination has been developed. The DSN measurement model produces fictitious DSN observables such as range, doppler and angular data, containing the potential observational errors in geometric data obtained from orbit propagator. So the important part of this research is to model observational errors in DSN observation and to characterize the errors. The modeled observational errors include the range delay effect caused by troposphere, ionosphere, antenna offset, and angular refraction effect caused by troposphere. Non-modeled errors are justified as the parameters. All of these results from developed models show about $10\%$ errors compared to the JPL's reference results, that are within acceptable error range.

Development of a Laser Reflector Array for STSAT2 (과학기술위성2호 레이저 반사경 조합 개발)

  • Lee, Jun-Ho;Kim, Seung-Bum;Lee, Sang-Hyun;Kim, Kyung-Hee;Im, Yong-Jo;Nam, Myung-Ryong;Lim, Jong-Tae;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.142-147
    • /
    • 2004
  • Satellite laser ranging (SLR), which is the most accurate geodetic method for precise orbit determination of artificial satellites, will be used to determine the precise orbit of STSAT2. This paper will present the development of a Laser Reflector Array (LRA) of STSAT2. Currently one LRA was designed, analyzed, manufactured, optically tested and assembled.

Prediction of the IGS RTS Correction using Polynomial Model at IOD Changes (IOD 변화 시점에서 다항식 모델을 사용한 IGS RTS 보정정보 예측)

  • Kim, Mingyu;Kim, Jinho;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.533-539
    • /
    • 2020
  • Real-time service (RTS) provided by IGS provides correction for GNSS orbit and clock via internet, so it is widely used in fields that require real-time precise positioning. However, the RTS signal may be lost due to an unstable Internet environment. When signal disconnection occurs, signal prediction can be performed using polynomial models. However, the RTS changes rapidly after the GNSS navigation message issue of data (IOD) changes, so it is difficult to predict when signal loss occurs at that point. In this study, we proposed an algorithm to generate continuous RTS correction information by applying the difference in navigation trajectory according to IOD change. The use of this algorithm can improve the accuracy of RTS prediction at IOD changes. After performing optimization studies to improve RTS prediction performance, the predicted RTS trajectory information was applied to precision positioning (PPP). Compared to the conventional method, the position error is significantly reduced, and the error increase along with the signal loss interval increase is reduced.