• Title/Summary/Keyword: 권고치

Search Result 92, Processing Time 0.021 seconds

The Evaluation of Radioimmunoassay kits for Insulin (Insulin 측정용 방사면역측정법 시약의 평가)

  • Shin, Yong Hwan;Kim, Yun Hyun;Lee, Il Kyu;Kim, Ji Young;Seok, Jae Dong;Shin, Suk Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose : Serum insulin levels are useful indicator which of reflecting the function of insulin secretion in pancreatic ${\beta}$ cell and diagnosis of diabetes, differentiating the cause of impaired glucose tolerance. Insulin measurement kits have shown some differences in many ways such as test methods as well as quality control. The purpose of this study was to evaluate the diagnostic performance of seven manufacturing companies commercial kits. Materials and Methods : The values of insulin measured by three manufacturing companies (Biosource, Siemens, TFB) with 59 samples in August 2009 were compared with those measured by four manufacturing companies (Immunotech, Izotope, BNIBT, Cisbio) with 68 samples in December 2011. We evaluated precision, recovery rate, dilution test and correlation of serum insulin measurement using seven manufacturing company kits. Statistical program SPSS 12.0 was used for the verification of results. Results : The coefficients variation of the precision on all seven different kits were showed within 5.0%. Recovery rate of Biosource, Siemens, TFB kits on three different levels showed 94.2~103.7%, 99.0~104.6%, 99.7~107.6% respectively. Immunotech, Izotope, BNIBT, Cisbio were 93.5~99.1%, 91.4~99.1%, 99.2~131.0%, 84.8~102.3% respectively. There was strong correlation between the measurement of insulin by Biosource kit and that by two commercial kits, Siemens (R2=0.96), TFB (R2=0.99). There was good correlation between the measurement of insulin by TFB kit and that by three commercial kits, Immunotech (R2=0.97), Izotope (R2=0.96), Cisbio (R2=0.97). In the dilution test performed with more than 200 ${\mu}IU/ml$ high concentration samples, samples with diabetes correctly was measured in all seven manufacturing kits. However, as measured with insulinoma samples TFB, Siemens, Izotope, Cisbio kits were correctly measured, but Biosource and Immunotech kits were measured 47.4 ${\mu}IU/ml$, 72.3 ${\mu}IU/ml$, respectively. Conclusion : Serum Insulin radioimmunoassay kits were showed excellent precision, correlation and good recovery rate. However, some kits were not measured correctly in the high concentration insulin values. when selecting a kit should be considered many factors that cost effectiveness, compatible for automation equipment, high performance kit, the environment for each laboratory such as reaction time and reporting time.

  • PDF

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF