• Title/Summary/Keyword: 굽힘 작동기

Search Result 26, Processing Time 0.037 seconds

Influence of Applied Electric Fields and Drive Frequencies on The Actuating Displacement of a Plate-type Piezoelectric Composite Actuator (평판형 압전 복합재료 작동기의 작동 변위에 미치는 인가전압 및 구동주파수의 영향)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.576-584
    • /
    • 2006
  • The actuating performance test of plate-type piezoelectric composite actuators having different lay-up sequences was experimentally carried out at simply supported and fixed-free boundary conditions. The actuating displacement of manufactured plate-type piezoelectric composite actuator (PCA) was measured using a non-contact laser displacement measurement system. Our results revealed that the actuating displacement with increasing applied electric field at a drive frequency of 1Hz increased non-linearly at the simply supported boundary condition whereas it almost linearly increased at the fixed-free boundary condition. On the other hand, the actuating displacement of piezoelectric composite actuator depended on the applied electric field in a drive frequency range from 1Hz to 10Hz, but its behavior was different in higher drive frequencies beyond 15Hz due to the occurrence of resonance. On the basis of the above experimental results, the bending characteristics of PCAs revealed different behavior depending on applied electric fields, drive frequencies as well as boundary conditions. Therefore, by investigating drive frequencies together with applied electric fields, actuating performance can be easily controlled and PCAs which were fabricated for this study will be sufficiently applied to pumping devices.

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing (IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석)

  • Lee, Sang-Gi;Kim, Gwang-Jin;Park, Hun-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.

Relationship Between CFRP Ply Orientation and Performance Stroke in Piezoelectric Zirconate Titanate Composite Actuator(PZTCA) of Artificial Muscle (인공근육에 적용되는 압전복합재료 작동기의 탄소섬유 배향각과 작동변위의 관계)

  • Kim Cheol-Woong;Lee Sung-Hyuk;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.641-644
    • /
    • 2005
  • The aim of this research is to evaluate the relationship between the total effective moment $(M^E)$ and Bemoulli-Euler bending moment (M) when the ply orientations of UD CFRP in Piezoelectric Zirconate Titanate Composite Actuator (PZTCA) are changed. The obtained results as follows. Firstly, as the performance test results by the CFRP ply orientation, the performance of [0] and [90] were stable. However, while the performance of [+45] was suddenly decreased after 5 hours. Secondly, the change of $M^E$ by the CFRP ply orientation was evaluated. As the CFRP ply orientation was increased from [0] to [+60], the $M^E$ were gradually decreased. However, they became a little bit increased from [+60] to [90]. Finally, after the change of M by the CFRP ply orientation was evaluated, it was found that $M^E=2.2M$ was valid for just [0] and that there was a relationship between $M^E$ and M according to the ply orientation.

  • PDF

Nondestructive Evaluation of Damage Modes in a Bending Piezoelectric Composite Actuator Based on Waveform and Frequency Analyses (파형 및 주파수해석에 근거한 굽힘 압전 복합재료 작동기 손상모드의 비파괴적 평가)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.870-879
    • /
    • 2007
  • In this study, various damage modes in bending unimorph piezoelectric composite actuators with a thin sandwiched PZT plate during bending fracture tests have been evaluated by monitoring acoustic emission (AE) signals in terms of waveform and peak frequency as well as AE parameters. Three kinds of actuator specimens consisting of woven fabric fiber skin layers and a PZT ceramic core layer are loaded with a roller and an AE activity from the specimen is monitored during the entire loading using an AE transducer mounted on the specimen. AE characteristics from a monolithic PZT ceramic with a thickness of $250{\mu}m$ are examined first in order to distinguish different AE signals from various possible damage modes in piezoelectric composite actuators. Post-failure observations and stress analyses in the respective layers of the specimens are conducted to identify particular features in the acoustic emission signal that correspond to specific types of damage modes. As a result, the signal classification based on waveform and peak frequency analyses successfully describes the failure process of the bending piezoelectric composite actuator exhibiting diverse failure mechanisms. Furthermore, it is elucidated that when the PZT ceramic embedded actuators are loaded mechanical bending loads, the failure process of actuator specimens with different lay-up configurations is almost same irrespective of their lay-up configurations.

Prediction of the Total Effective Moment (ME) Using Stroke Range in Lightweight Piezoelectric Composite Actuator(LIPCA) (경량압전 복합재료 작동기의 작동범위를 이용한 총유효 모멘트 (ME)의 예측)

  • Yoon Kwang-Joon;Kim Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.120-127
    • /
    • 2006
  • The fatigue behavior of LIPCA was so sensitive to the manufacturing condition, the environmental factors and the change of the test apparatus. Therefore, we could be considering not only the relationship between the stroke range $({\Delta}h)$ and actuating frequency but also the relationship between the stroke range $({\Delta}h)$ and the total effective moment $(M^E)$. Thus, this study proposed the calculation method of the applying $M^E$ when the $({\Delta}h)$ of LIPCA was increased from 1.mm to 20mm. To estimate the relationship between the total effective moment $(M^E)$ and the Bernoulli-Euler bending moment (M) was reviewed. And the residual stress distribution of LIPCA and THUNDER using the CLT was evaluated. In conclusions, converting the $({\Delta}h)$ of LIPCA to the radius of curvature (p) and calculating the $(M^E)$, it was found that the p by the $M^E$ changed similarly as the $({\Delta}h)$. It was found that the $M^E$ was 2.2 times as the M. While CFRP and PZT of LIPCA, which had the superior compressive characteristic, had the compressive residual stress, GFRP was subject to the tensile residual stress. Since this reversed configuration between the compressive residuals stress and the tensile one was made, the requirement of the stroke range $({\Delta}h)$ increase was satisfied.

Variations in Electrical Conductivity of CNF/PPy Films with the Ratio of CNF and Application to a Bending Sensor (탄소나노섬유의 함량에 따른 CNF/PPy 필름의 전기전도도 및 굽힘센서로 응용)

  • Kim, Cheol;Zhang, Shuai;Kim, Seon-Myeong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • A new material, carbon-nanofiber/polypyrrole (CNF/PPy) composite films, with different CNF weight ratios were fabricated electrochemically. Compared to the fabrication process based on simple physical mixing, the flexibility of the new film has been improved much better than the previous similar material. Pure PPy films were also fabricated by the new electrochemical process for the comparison of difference. Several SEM images were taken at two locations (electrode-side and solution-side) and at the cross section of the samples. Electrical conductivity of the composite films was measured by the four-probe method. The conductivity of the pure PPy film 0.013cm thick was 79.33S/cm. The CNF/PPy composite film with 5% CNF showed a conductivity of 93S/cm. One with 10% CNF showed a conductivity of 126 S/cm. The conductivity of PPy improves, as the CNF weight ratio increases. The good conductivity of CNF/PPy composites makes them a candidate for a small bending actuator. A bending sensor consists of PPy and PVDF, which can be operated in the air, was designed and the bending deflection was calculated using FEM.

Design of Bending Actuator using Shape Memory Alloy Wire (형상기억합금 선재를 이용한 굽힘 작동기 설계)

  • Heo, Seok;Hwang, Do-Yeon;Park, Hoon-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.210-215
    • /
    • 2008
  • This paper presents an experimental study on a bending actuator with a shape memory alloy wire. In this study, we introduced design process and experimental result of the bending actuator. The bending actuator consists of a SMA wire, springs, and a glass/epoxy strip. In the bending actuator, springs were used to restore the SMA wire to its initial shape right after actuation. To obtain properties of the SMA wire, DSC test was performed and the behavior of the SMA wire under different loadings was observed. Finally, the proposed bending actuator shows reasonable actuation behavior with relatively lower power consumption, fast response and effective efficiency.

  • PDF

A Study on Mechanical Properties of IPMC actuators (IPMC 작동기의 기계적 물성에 관한 연구)

  • Kim, Hong-Il;Kim, Dae-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.50-54
    • /
    • 2007
  • The Ionic Polymer Metal Composite (IPMC), an electro-active polymer, has many advantages including bending actuation, low weight, low power consumption, and flexibility. These advantages coincide with the requirements of a bio-related application. Thus, IPMC is promising materials for bio-mimetic actuator and sensor applications. Before applying IPMC to actual application, basic mechanical properties of IPMC should be studied in order to utilize IPMC for practical uses. Therefore, IPMCs are fabricated to investigate the mechanical characteristics. Nafion is used as a base ionic polymer. Mason samples cast with various thicknesses are used to test the thickness effects of IPMC. Subsequently, IPMC is fabricated using the chemical reduction method. The deformation, blocking force and frequency response of the IPMC actuator are important properties. In this present study, the performances of the IPMC actuators, including the deformation, blocking force and natural frequency, are then obtained according to only the input voltage and IPMC dimensions. Finally, the empirical performance model and the equivalent stiffness model of the IPMC actuator are established using experiments results.

A study on bio-signal process for prosthesis arm control (인공의수의 능동 제어를 위한 생체 신호 처리에 관한 연구)

  • Ahn, Young-Myung;Yoo, Jae-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.28-36
    • /
    • 2006
  • In this paper, an algorithm to classify the 4 motions of arm and a control system to position control the prosthesis are studied. To classify the 4 motions, we use flex sensors which is electrical resistance type sensor that can measure warp of muscle. The flex sensors are attached to the biceps brchii muscle and coracobrachialis muscle and the sensor signals are passed the sensing system. 4 motion of the forearm - flexion and extension, the pronation and supination are classified from this. Also position of forearm is measured from the classified signals. Finally, A two D.O.F prosthesis arm with RC servo-motor is designed to verify the validity of the algorithm. At this time, fuzzy controller is used to reduce the position error by rotary inertia and noise. From the experiment, the position error had occurred within about 5 degree.

A Study on the Improvement of the Sound Quality of the Interior Noise of A/T Vehicle in Idle State (공 회전시 자동변속기 차량의 실내소음 음질 개선에 관한 연구)

  • 이상권;최병욱;여승동
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.110-119
    • /
    • 1993
  • 본 논문은 자동변속기를 탑재한 차량에서 에어콘(air condition)을 작동시키고, 공 회전시 기어의 변속을 "D"단에 두었을 때 실내에서 발생하는 이상음의 원인규명 및 해결 방 법에 관한 연구 결과를 논하고자 한다. 이 이상한 소음의 원인을 규명하기 위하여 실린더 내부의 연소압력, 메인 베어링캡(main bearing cap)의 진동, 엔진 마운팅 보스의 진동 및 차 량의 실내소음을 동시에 측정하여 분석하였으며 이 결과에 의하면 이상음의 원인은 크랭크 샤프트(crank shaft)의 굽힘진동이 파워플랜트(power plant)를 가진하여 진동을 증가시키고, 이 진동이 마운팅 보스를 통하여 차량의 차체에 전달되며, 차체의 진동에 의해서 발생하는 고체 전달음(structure-borne noise)이었다. 또한 이상음의 주기는 주파수 성분은 200-400Hz 이었다. 이 이상음은 크랭크 샤프트의 댐퍼 풀리의 질량을 저감하여 크랭크 샤프트의 동특 성을 개선함으로서 해결가능하고, 혹은 점화시기를 지연하여 연소 압력을 낮춤으로서 해결 가능하다.

  • PDF