• Title/Summary/Keyword: 굽힘거동

Search Result 238, Processing Time 0.032 seconds

Non-linear Temperature Dependent Deformation Anaysis of CBGA Package Assembly Using Moir′e Interferometry (모아레 간섭계를 이용한 CBGA 패키지의 비선형 열변형 해석)

  • 주진원;한봉태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • Thermo-mechanical behavior of a ceramic ball grid array (CBGA) package assembly are characterized by high sensitive moire interferometry. Moir fringe patterns are recorded and analyzed at various temperatures in a temperature cycle. Thermal-history dependent analyses of global and local deformations are presented, and bending deformation (warpage) of the package and shear strain in the rightmost solder ball are discussed. A significant non-linear global behavior is documented due to stress relaxation at high temperature. Analysis of the solder interconnections reveals that inelastic deformation accumulates on only eutectic solder fillet region at high temperatures.

  • PDF

Fracture Behavior Evaluation of Wall Thinned pipes by Finite Element Analysis (감육배관의 요한요소해석에 의한 파괴거동 평가)

  • AHN SEOK-HWAN;NAM KI-Woo;KIM JIN-WOOK;LEE SOO-SIG;YOON JA-MUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.320-325
    • /
    • 2004
  • Fracture behaviors and strength of pipes with local wall thinning are very important Jar the integrity of energy plants. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion damage. Recently, the effects of local wall thinning on strength and fracture behaviors of piping system have been well studied. In this paper, the elasto-plastic analysis is performed by FE code ANSIS. We evaluated the failure mode, fracture strength and fracture behavior from FE analysis.

  • PDF

Fracture Behavior Evalustion of Pipes with Local Wall Thinning (감육배관의 파괴거동 평가)

  • Ahn, S.H.;Nam, K.W.;Kim, S.J.;Kim, H.S.;Kim, J.H.;Do, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.61-66
    • /
    • 2001
  • Fracture behaviors of pipes with local wall thinning is very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe drosion-corrosion damage. However, effect of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, ovalization+cracking, local buckling and local buckling+cracking. Also, maximum load was successfully evaluated.

  • PDF

Fracture Behavior of Welded Pipes with Local Wall Thinning (감육을 가지는 배관 용접부의 파괴거동)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Jeong, Jeong-Hwan;Kim, Yong-Un
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.90-95
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale welded and unwelded carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strengths of welded and unwelded piping system with local wall thinning were evaluated.

  • PDF

Mechanical behaviors of multi-layered foam core sandwich composite (다층 구조 폼 코아 샌드위치 복합재의 기계적 거동 연구)

  • Oh J.O.;Yoon S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.381-382
    • /
    • 2006
  • The mechanical behaviors of multi-layered foam core sandwich composite were investigated through a 3-point bending test. The sandwich specimens were obtained from sandwich panel consisting of aluminum faces and urethane foam core. Three types of sandwich specimens such as a single structure, a double structure and a triple structure were considered. The span of sandwich specimens were varied from 170mm to 350mm. According to the results, the flexural and shear properties of multi-layered sandwich composite were found to be higher than those of single-layered sandwich composite.

  • PDF

Deformation and Fracture Behavior of Wall Thinned Carbon Steel Pipes (감육된 탄소강배관의 변형과 파괴거동)

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.17-23
    • /
    • 2006
  • Monotonic four-point bending tests were conducted on straight pipe specimens, 102 mm in diameter with local wall thinning, in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated natural erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classifiedas local buckling, ovalization, or crack initiation, depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.

Measurement and Analysis of Soil moisture Behavior in Unsaturated Zone on a Steep Hillslope (사면불포화조건에서의 토양수분 흐름거동의 측정과 분석)

  • Gwak, Yong Seok;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.471-471
    • /
    • 2015
  • 토양내의 수분흐름을 이해하는 것은 토양수분의 시공간적 분포변화와 유출기작을 규명하는데 매우 중요하다. 본 연구에서는 설마천유역의 작은 사면에서의 장력측정 시스템을 구축하여, 3차원의 흐름방향에 대해 잠재적 흐름구배를 평가하고자 하였다. 또한 흐름구배를 평가하기 위한 일반적 산술적 계산방법인 평균적 흐름구배와 측정시스템의 구조적 영향 및 흐름구배의 공간적 평가 기준을 고려한 계산방법론을 개발하여 비교 평하였다. 3차원의 흐름방향은 사면의 지표경사를 기준으로 x, y, z축을 기준으로 하여, 각 축 방향에 해당하는 흐름구배 값과 흐름방향을 각각 계산하였다. 그 결과, 강우사상에 따른 토양내의 장력변화는 매우 민감하게 변화하였으며, 이에 따른 각 흐름구배 값과 흐름방향의 반응이 빠르게 반응을 하였다. 특히, 습윤, 건조기간동안의 흐름구배의 발달 및 방향이 바뀌는 천이되는 상태인 흐름 굽힘 현상(flow Bending)을 확인하였다.

  • PDF

Deformation Behavior of Curling Strips on Tearing Tubes (테어링 튜브 컬의 변형 거동 예측 기법 연구)

  • Choi, Ji Won;Kwon, Tae Soo;Jung, Hyun Seung;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1053-1061
    • /
    • 2015
  • This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

Basal slip (0001)1/3<1120> dislocation in sapphire ($\alpha$-Al$_2$O$_3$) single crystals Part I : recombination motion (사파이어($\alpha$-Al$_2$O$_3$) 단결정에 있어 basal slip (0001)1/3<1120>전위 Part I : 재결합거동)

  • Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.278-282
    • /
    • 2001
  • The recombination motion of Partial dislocations on basal slip (0001) 1/3<1120> in sapphire ($\alpha$-Al$_2$$O_3$) single crystals was investigated using the four-point bending test with the prism plane (1120) samples. These bending experiments were carried but in the temperature range from $1200^{\circ}C$ to $1400^{\circ}C$ at various engineering stresses 90MPa, 120MPa, and 150MPa. During these tests it was shown that an incubation time was needed for basal slip to be activated. The activation energy for the incubation time was 5.6-6.0eV in the temperature range from $1200^{\circ}C$ to $1400^{\circ}C$. The incubation time is believed to be related to recombination of climb dissociated partial dislocations via self-climb. In addition, these activation energies are nearly same as those for oxygen self-diffusion in $Al_2$$O_3$ (approximately 6.3 eV). Thus, the recombination of the two partial dislocations would be possibly controlled by oxygen diffusion on the stacking fault between the partials.

  • PDF

Packaging Substrate Bending Prediction due to Residual Stress (잔류응력으로 인한 패키지 기판 굽힘 변형량 예측)

  • Kim, Cheolgyu;Choi, Hyeseon;Kim, Minsung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • This study presents new analysis method to predict bending behavior of packaging substrate structure by comparing finite element method simulation and measured curvature using 3D scanner. Packaging substrate is easily bent and deflected while undergoing various processes such as curing of prepreg and copper pattern plating. We prepare specimens with various conditions and measure contours of each specimen and compute the residual stresses on deposited films using analytical solution to find the principle of bending. Core and prepreg in packaging substrate are made up of resin and bundles of fiber which exist orthogonally each other. Anisotropic material properties cause peculiar bending behavior of packaging substrate. We simulate the bending deflection with finite element method and verify the simulated deflection with measured data. The plating stress of electrodeposited copper is about 58 MPa. The curing stresses of solder resist and prepreg are about 13 MPa and 6.4 MPa respectively in room temperature.