• Title/Summary/Keyword: 굴착토

Search Result 253, Processing Time 0.021 seconds

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.

A study on the traditional salt-making of the Joolpo inlet area during the 18th and 19th century (18~19世紀 茁浦灣의 煮鹽 - 鹽場의 分布와 煮鹽法을 중심으로 -)

  • ;Hong, Keum-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.1
    • /
    • pp.46-64
    • /
    • 1994
  • Among every civilized people salt has been recognized as an essential foodstuff to the human society without which even man's survivor is unthinkable. The cultural-anthropological meaning of salt is estimated highly as well, and in geographical perspective salt itself symbolize regional interrelationship. Playing a decisive role in freeing innermost settlement from isolation, salt aiso made a contribution to expanding human habitats. This study tries to reconstruct historica geography of 18th and 19th century surrounding traditional salt-roasting (chayeom). The Joolpo Inlet area which is located on the mid-western coast in Honem Region is selected for study area. Established on the basis of optimum physical geographical conditions such as topography, climate and vegetation, salt-making of Joolpo Inlet area was run dynamically with the sudden turn of events in the 18-19th century which was chacterized as an age of transition from medieval society to modern one. In this paper the writer attempts to clarify mainly following three points: physical conditions and socio-economic background leading to the initiation and later development of roasting of salt in Joolpo Bay; distribution of saltworks; methods of saltmaking. Main points drawn from these analyses can be summarized as follows: of iron pan and cow-drawn tools rendered labour-saving and output growth. 1, Saltworks of Joolpo Inlet area in the 18-19th century were distributed evenly over Kobu, Puan, Mujang and Heungduck counties among which Kobu's was located in Puanmyon - a sort of exclave. All saltworks belonging to above four counties were clasified as most lucrative ones in Honam Region on government archives. In particular, Gumdang saltwork which belongs to Mujang county is noteworthy in that it was first introduced by one Paekje priest in 6th century and therefore it provides a clue to examine the history of salt-roasting of Joolpo Inlet area. In light of the fact that temple or monastery economy, regardless of East and West, has been closely connected with traditional industry, the case of Gumdang is not unusual. 2. The process of saltmaking follows this order: harrowing of salt field exposed to solar heat; construction of saltern mound with saline earth; acquiring of brine by leaching saline earth; roasting of salt. Salterns (saltworks) are consisted with various salt making facilities such as roasting shed, saltern mound, salt field, salt well) salt pit or brine pit) and seawater reservoir. Among them roasting shed which is constructed chiefly with hundreds of pieces of pine tree as a frame and with straw as roof and wall is customarily considered as an unit of saltwork. And inside it is saltpan made of two kinds of materials, that is iron pan or plaster pan. The area attached to one unit of roasting shed is approximately 1 ha, and that of saltern mound is a tenth of it.

  • PDF

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.