• Title/Summary/Keyword: 군집화 모델링

Search Result 48, Processing Time 0.027 seconds

Efficient Continuous Vocabulary Clustering Modeling for Tying Model Recognition Performance Improvement (공유모델 인식 성능 향상을 위한 효율적인 연속 어휘 군집화 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.177-183
    • /
    • 2010
  • In continuous vocabulary recognition system by statistical method vocabulary recognition to be performed using probability distribution it also modeling using phoneme clustering for based sample probability parameter presume. When vocabulary search that low recognition rate problem happened in express vocabulary result from presumed probability parameter by not defined phoneme and insert phoneme and it has it's bad points of gaussian model the accuracy unsecure for one clustering modeling. To improve suggested probability distribution mixed gaussian model to optimized for based resemble Euclidean and Bhattacharyya distance measurement method mixed clustering modeling that system modeling for be searching phoneme probability model in clustered model. System performance as a result of represent vocabulary dependence recognition rate of 98.63%, vocabulary independence recognition rate of 97.91%.

A Study on Characterizing the Human Mobility Pattern with EM(Expectation Maximization) Clustering (EM(Expectation Maximization) 군집화(Clustering)을 통한 인간의 이동 패턴 연구)

  • Kim, Hyun-Uk;Song, Ha-Yoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.222-225
    • /
    • 2011
  • 이전에 수행된 연구에서 인간의 이동 패턴은 Levy flight 행동을 보인다고 알려져있다. 그러나 우리의 경험적 지식을 바탕으로 생각해 볼 때 인간의 이동 패턴을 Levy flight 행동만 가지고 나타내기에는 한계가 있어 보인다. 인간의 이동 패턴은 주위환경, 시간, 개인의 습관, 그리고 사회적 지위 등에 따라 서로 다른 모양을 보인다. 즉, 인간 이동의 형태를 파악하기 위해서는 좀 더 다양한 정보가 있어야만 인간 이동의 패턴을 사실적으로 모델링 할 수 있다. 인간의 이동 패턴을 사실적으로 모델링하기에 필요한 정보를 얻기 위해서 상향식 방법(Bottom up)으로 우선 실제 이동 패턴을 분석하여 모델링에 필요한 정보를 추출하고 다시 그 정보를 검증하는 과정으로 모델링에 필요한 정보가 구체적으로 나타나게 될 것이다. 이에 실제 인간의 이동 패턴을 분석하기 위해 아무런 매개변수 없이 개인의 GPS 데이터를 바탕으로 위치정보만을 가지고 군집화(Clustering)를 하게 되면 특정 위치에 대한 군집이 생성된다. 이러한 군집이 나타내는 것은 자주 머무는 지역, 이동 경로 등이 될 것이다. 본 논문에서는 인간의 이동 정보인 GPS 데이터를 가지고 EM 군집화를 통하여 생성된 군집을 통해 인간의 이동 패턴을 분석할 것이다.

A System for Keyword Extraction and Keyword-based Sentiment Analysis for Topic Analysis in Discussion (토론 대화에서의 토픽 분석을 위한 키워드 추출 및 키워드 기반 감성분석 시스템)

  • Yong-Bin Jeong;Yu-Jin Oh;Jae-Wan Park;Sae-Mi Jang;Young-Gyun Hahm
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.164-169
    • /
    • 2022
  • 토픽 모델링은 비즈니스 분석이나 기술 동향 파악 등 다방면에서 많이 사용되고 있는 기술이다. 하지만 대표적인 방법인 LDA와 같은 비지도학습의 경우, 그 알고리즘 구조상 문서의 수가 많을 때 토픽 모델링이 가능하다. 본 논문에서는 문서의 수가 적은 경우도, 키워드 및 키프레이즈를 이용한 군집화를 통해 토픽 모델링을 하고 감성분석을 통해 토픽에 대한 분석도 제시하였다. 이에 필요한 데이터 제작 및 키워드 추출, 키워드 기반 감성분석, 키워드 임베딩 및 군집화를 구현하였고, 결과를 정성적으로 보았을 때 유의미한 분석이 되는 것을 확인하였다.

  • PDF

Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method (Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링)

  • Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.243-248
    • /
    • 2015
  • Recognition model is not defined when you configure a model, Been added to the model after model building awareness, Model a model of the clustering due to lack of recognition models are generated by modeling is causes the degradation of the recognition rate. In order to improve decision tree state tying modeling using parameter estimation of Bayesian method. The parameter estimation method is proposed Bayesian method to navigate through the model from the results of the decision tree based on the tying state according to the maximum probability method to determine the recognition model. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method error rate reduction of 1.29% compared with baseline model, which is slightly better performance than the existing approach.

Exploring Regional Decline Risk Areas and Factors Using Topic Modeling and Cluster Analysis (토픽모델링과 군집분석을 통한 지방 소멸 위험지역과 요인의 탐색)

  • Ji-Min Kim;Heeryon Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.349-350
    • /
    • 2023
  • 우리나라는 지속적인 저출산과 고령화로 인해 지방 소멸 위험지역이 점차 늘어나고 있다. 본 연구는 지방 소멸과 관련된 다양한 요인을 '인구 소멸'이라는 키워드를 포함하는 신문 기사에 대한 토픽모델링을 통해 발견하고, 추출된 토픽과 관련된 공공 데이터를 수집하여 비슷한 특징을 가지는 지역을 묶는 군집분석을 수행한다. 그리고 지방소멸위험지수로 분류된 소멸 위험지역과 군집분석 결과를 비교한다.

An Optimization Modeling Study on Coastal Patrol Killer Medium(PKM) Requirement (연안 해역 소형 함정 소요 최적화 모델링 연구)

  • Hong, Yoon-Gee;Kim, Young-In;Kim, Yang-Rae;Lee, Jung-Woo;Jang, Dong-Hak
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.25-37
    • /
    • 2010
  • This paper deals with achieving the optimal quantity of required PKMs to cover the coastal areas divided into the proper size of sectors, and then using Set Cover Model, Clustered Model, etc. It is optimized via "Requirement Optimization Process" to allocate PKMs reasonably which is considered as conducting mission deployment sectors. This "Hybrid Proper Requirement Model" accommodating the optimization process is introduced and testified by examining a requirement problem.

Non-Keyword Model for the Improvement of Vocabulary Independent Keyword Spotting System (가변어휘 핵심어 검출 성능 향상을 위한 비핵심어 모델)

  • Kim, Min-Je;Lee, Jung-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.319-324
    • /
    • 2006
  • We Propose two new methods for non-keyword modeling to improve the performance of speaker- and vocabulary-independent keyword spotting system. The first method is decision tree clustering of monophone at the state level instead of monophone clustering method based on K-means algorithm. The second method is multi-state multiple mixture modeling at the syllable level rather than single state multiple mixture model for the non-keyword. To evaluate our method, we used the ETRI speech DB for training and keyword spotting test (closed test) . We also conduct an open test to spot 100 keywords with 400 sentences uttered by 4 speakers in an of fce environment. The experimental results showed that the decision tree-based state clustering method improve 28%/29% (closed/open test) than the monophone clustering method based K-means algorithm in keyword spotting. And multi-state non-keyword modeling at the syllable level improve 22%/2% (closed/open test) than single state model for the non-keyword. These results show that two proposed methods achieve the improvement of keyword spotting performance.

3D building modeling from airborne Lidar data by building model regularization (건물모델 정규화를 적용한 항공라이다의 3차원 건물 모델링)

  • Lee, Jeong Ho;Ga, Chill Ol;Kim, Yong Il;Lee, Byung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2012
  • 3D building modeling from airborne Lidar without model regularization may cause positional errors or topological inconsistency in building models. Regularization of 3D building models, on the other hand, restricts the types of models which can be reconstructed. To resolve these issues, this paper modelled 3D buildings from airborne Lidar by building model regularization which considers more various types of buildings. Building points are first segmented into roof planes by clustering in feature space and segmentation in object space. Then, 3D building models are reconstructed by consecutive adjustment of planes, lines, and points to satisfy parallelism, symmetry, and consistency between model components. The experimental results demonstrated that the method could make more various types of 3d building models with regularity. The effects of regularization on the positional accuracies of models were also analyzed quantitatively.

Decision Tree for Likely phoneme model schema support (유사 음소 모델 스키마 지원을 위한 결정 트리)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.367-372
    • /
    • 2013
  • In Speech recognition system, there is a problem with phoneme in the model training and it cause a stored mode regeneration process which come into being appear time and more costs. In this paper, we propose the methode of likely phoneme model schema using decision tree clustering. Proposed system has a robust and correct sound model which system apply the decision tree clustering methode form generate model, therefore this system reduce the regeneration process and provide a retrieve the phoneme unit in probability model. Also, this proposed system provide a additional likely phoneme model and configured robust correct sound model. System performance as a result of represent vocabulary dependence recognition rate of 98.3%, vocabulary independence recognition rate of 98.4%.

A Modeling Methodology for Analysis of Dynamic Systems Using Heuristic Search and Design of Interface for CRM (휴리스틱 탐색을 통한 동적시스템 분석을 위한 모델링 방법과 CRM 위한 인터페이스 설계)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • Most real world systems contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of them. A two-step methodology comprised of clustering and then model creation is proposed for the analysis on time series data. An interface is designed for CRM(Customer Relationship Management) that provides user with 1:1 customized information using system modeling. It was confirmed from experiments that better clustering would be derived from model based approach than similarity based one. Clustering is followed by model creation over the clustered groups, by which future direction of time series data movement could be predicted. The effectiveness of the method was validated by checking how similarly predicted values from the models move together with real data such as stock prices.