• Title/Summary/Keyword: 군집화 기법

Search Result 501, Processing Time 0.026 seconds

A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns (디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계)

  • Kim, Dong-Yeon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.319-326
    • /
    • 2002
  • In this paper, we have designed and implemented cluttering classification systems- unsupervised classifiers-for the processing of satellite remote sensing images. Implemented systems adopt various design patterns which include a factory pattern and a strategy pattern to support various satellite images'formats and to design compatible systems. The clustering systems consist of sequential clustering, K-Means clustering, ISODATA clustering and Fuzzy C-Means clustering classifiers. The systems are tested by using a Landsat TM satellite image for the classification input. As results, these clustering systems are well designed to extract sample data for the classification of satellite images of which there is no previous knowledge. The systems can be provided with real-time base clustering tools, compatibilities and components' reusabilities as well.

XML Clustering Technique by Genetic Algorithm (유전자 알고리즘을 통한 XML 군집화 방법)

  • Kim, Woo-Saeng
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • Recently, researches are studied in developing efficient techniques for accessing, querying, and managing XML documents which are frequently used in the Internet. In this paper, we propose a new method to cluster XML documents efficiently. An element of a XML document corresponds to a node of the corresponding tree and an inclusion relationship of the document corresponds to a relationship between parent and child node of the tree. Therefore, similar XML documents are similar to the node's name and level of the corresponding trees. We make evaluation function with this characteristic to cluster XML documents by genetic algorithm. The experiment shows that our proposed method has better performance than other existing methods.

XML Documents Clustering Technique Based on Bit Vector (비트벡터에 기반한 XML 문서 군집화 기법)

  • Kim, Woo-Saeng
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.10-16
    • /
    • 2010
  • XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for accessing, querying, and storing XML documents. In this paper, we propose a new method to cluster XML documents efficiently. A bit vector which represents a XML document is proposed to cluster the XML documents. The similarity between two XML documents is measured by a bit-wise AND operation between two corresponding bit vectors. The experiment shows that the clusters are formed well and efficiently when a bit vector is used for the feature of a XML document.

Adaptive Euclidean Distance Measure Method for Numeric Data Distribution (수치 데이터 분포에 적응적 유클리드 거리 측정 기법)

  • Choi, You-Hwan;Joo, Bum-Joon;Jung, Sung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.67-69
    • /
    • 2011
  • 데이터의 군집 분석에서 두 개의 서로 다른 데이터에 대한 유사도(거리)를 어떻게 정의하는가는 매우 중요한 문제이다. 수치속성에 대한 거리 측정 방법에는 다양한 기법이 존재하지만 각 속성의 크기와 범위가 서로 크게 다를 경우 이들을 동일한 인자로 여기고 거리 측정을 하게 되면 논리적인 오류를 범할 수 있다. 기존의 군집 분석 연구에서 사용된 거리 측정 기법은 데이터의 정규화 과정을 통해 이 문제를 해결하려고 노력하지만 일반적인 정규화는 이상치의 존재나 데이터의 편중된 분포 등의 이유로 속성별 거리가 왜곡될 수 있다. 본 논문은 이러한 문제점을 해결하기 위해 정규화된 데이터에서 각 속성의 비중을 고려한 적응적 유클리드 거리 측정 기법(AEDM: Adaptive Euclidean Distance Measure)을 제안한다. AEDM은 유클리드 거리를 기반으로 정규화 된 데이터의 형태에 따라 가중치를 부여하여 데이터의 분포에 관계없이 각 속성간의 거리를 충분히 반영하기 때문에 더욱 정확한 군집 분석을 가능하게 한다.

Extraction of Basic Insect Footprint Segments Using ART2 of Automatic Threshold Setting (자동 임계값 설정 ART2를 이용한 곤충 발자국의 인식 대상 영역 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1604-1611
    • /
    • 2007
  • In a process of insect footprint recognition, basic footprint segments should be extracted from a whole insect footprint image in order to find out appropriate features for classification. In this paper, we used a clustering method as a preprocessing stage for extraction of basic insect footprint segments. In general, sizes and strides of footprints may be different according to type and sire of an insect for recognition. Therefore we proposed an improved ART2 algorithm for extraction or basic insect footprint segments regardless of size and stride or footprint pattern. In the proposed ART2 algorithm, threshold value for clustering is determined automatically using contour shape of the graph created by accumulating distances between all the spots of footprint pattern. In the experimental results applying the proposed method to two kinds of insect footprint patterns, we could see that all the clustering results were accomplished correctly.

3D Object Detection with Low-Density 4D Imaging Radar PCD Data Clustering and Voxel Feature Extraction for Each Cluster (4D 이미징 레이더의 저밀도 PCD 데이터 군집화와 각 군집에 복셀 특징 추출 기법을 적용한 3D 객체 인식 기법)

  • Cha-Young, Oh;Soon-Jae, Gwon;Hyun-Jung, Jung;Gu-Min, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.471-476
    • /
    • 2022
  • In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.

How to determine the number of clusters (군집수 결정 문제)

  • Yun, Bok-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.689-693
    • /
    • 2004
  • 주어진 데이터를 일정한 기준에 따라 여러 개 군집으로 분할할 때 대부분 경우는 군집수에 대한 사전 정보가 없이 군집화를 실시하게 된다. 적절한 군집수의 결정은 군집화 결과의 타당성에 전제가 되는 매우 중요한 문제이나 내재된 복잡성 때문에 실제 적용에 간편한 방법을 찾기 힘들고 더구나 다양한 형태의 데이터에 보편적으로 적합한 방법을 찾기는 더욱 어렵다. 본 연구에서는 기존의 제시된 군집수 결정방법 들의 아이디어 들을 소개하고 주어진 데이터의 종류에 관계없이 일반적으로 적용할 수 있는 새로운 군집수 결정기법을 제시한다. 대부분의 경우 군집수 결정은 군집화와 동시에 이루어지게 되므로 이것을 한꺼번에 처리하는 범용의 방법도 소개한다. 적용 예제들을 통한 타당성 검증도 이루어진다.

  • PDF

Hierarchical Nearest-Neighbor Method for Decision of Segment Fitness (세그먼트 적합성 판단을 위한 계층적 최근접 검색 기법)

  • Shin, Bok-Suk;Cha, Eui-Young;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.418-421
    • /
    • 2007
  • In this paper, we proposed a hierarchical nearest-neighbor searching method for deciding fitness of a clustered segment. It is difficult to distinguish the difference between correct spots and atypical noisy spots in footprint patterns. Therefore we could not completely remove unsuitable noisy spots from binarized image in image preprocessing stage or clustering stage. As a preprocessing stage for recognition of insect footprints, this method decides whether a segment is suitable or not, using degree of clustered segment fitness, and then unsuitable segments are eliminated from patterns. Removing unsuitable segments can improve performance of feature extraction for recognition of inset footprints.

  • PDF

A Load Balancing Scheme for Distributed SDN Based on Harmony Search with K-means Clustering (K-means 군집화 및 Harmony Search 알고리즘을 이용한 분산 SDN의 부하 분산 기법)

  • Kim, Se-Jun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.29-30
    • /
    • 2019
  • 본 논문에서는 다중 컨트롤러가 존재하는 분산 SDN 환경에서 과도한 제어 메시지로 인한 과부하된 컨트롤러의 부하를 줄이기 위하여 이주할 스위치를 K-means 군집화와 Harmony Search(HS)를 기반으로 선정 하는 기법을 제안하였다. 기존에 HS를 이용하여 이주할 스위치를 선택하는 기법이 제시되었으나, 시간 소모에 비하여 정확도가 부족한 단점이 있다. 또한 Harmony Memory(HM) 구축을 위해 메모리 소모 또한 크다. 이를 해결하기 위하여 본 논문에서는 유클리드 거리를 기반으로 하는 K-means 군집화를 이용하여 이주할 스위치를 골라내어 HM의 크기를 줄이고 이주 효율을 향상 시킨다.

  • PDF

An Edge Extraction Method Using K-means Clustering In Image (영상에서 K-means 군집화를 이용한 윤곽선 검출 기법)

  • Kim, Ga-On;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.281-288
    • /
    • 2014
  • A method for edge detection using K-means clustering is proposed in this paper. The method is performed through there steps. Histogram equalizing is applied to the image for the uniformed intensity distribution. Pixels are clustered by K-means clustering technique. Then Sobel mask is applied to detect edges. Experiments showed that this method detected edges better than conventional method.