Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.379-380
/
2009
히스토그램 스트레칭이나 히스토그램 균등화 등 기존 대비 향상 기법들과 히스토그램 균등화 기반의 수많은 방법들은 저대비에 소수의 화소들이 넓게 퍼져 있는 영상에 대해서 만족할만한 결과를 내지 못한다. 따라서 본 논문은 군집화 방법을 이용한 새로운 영상 대비 향상 기법을 제안한다. 히스토그램의 군집수는 원영상의 히스토그램을 분석하여 얻을 수 있다. 히스토그램 성분들을 K-means 알고리즘을 이용하여 군집화한다. 그리고 히스토그램 군집 범위와 군집의 화소수 비율을 비교하여 히스토그램 스트레칭과 히스토그램 균등화를 선택적으로 적용한다. 실험 결과로부터 제안한 방법이 기존의 대비 향상 기법들보다 더 효과적임을 확인할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.115-118
/
2012
다양한 네트워크에서 군집을 분석하고 그 구조를 발견하는 것은 그 네트워크의 복잡도를 낮추어 전체 시스템을 이해하고 관리하는데 중요하다. 특히 기본적인 컴퓨팅이 가능한 여러 기기들이 자율적으로 서로 통신하여 군집을 이루는 자율 군집 네트워크에서 군집을 정확하게 발견하는 것은 집단행동 서비스를 실현하는데 있어서 중요한 기술이다. 따라서 본 연구에서는 자율 군집 네트워크에서 군집 탐지 기법을 제안한다. 제안하는 기법은 군집을 발견하고 그 군집을 식별하기 위해 해당 네트워크에서 한 노드를 공유하는 두 개의 간선 쌍에 대해 계층 군집화를 수행하고 계층 간에 간선 유사도를 계산하여 비교한다. 계층 군집화를 통한 간선들은 트리 구조로 표현할 수 있으며 최적의 분할 밀도를 이용하여 노드들을 클러스터링한 후 최종 군집으로 분리 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.10a
/
pp.722-724
/
2012
문서 군집화를 통하여 문서를 효율적으로 조직, 관리, 검색 할 수 있다. 일반적으로 문서 군집화는 많은 단어와 개념들을 포함하고 있기 때문에 차원이 큰 벡터 공간 모델에서 군집화를 수행한다. 본 논문에서 문서 집합에 대응하는 온톨로지를 이용하여 문서 벡터 공간의 차원을 줄여 효율적으로 군집화하는 방법을 제안하고, 실험을 통하여 기존 방법보다 우수함을 보인다.
Experiments and research on genes have become very convenient by using DNA chips, which provide large amounts of data from various experiments. The data provided by the DNA chips could be represented as a two dimensional matrix, in which one axis represents genes and the other represents samples. By performing an efficient and good quality clustering on such data, the classification work which follows could be more efficient and accurate. In this paper, we use a bio-inspired algorithm called the Particle Swarm Optimization algorithm to propose an efficient clustering mechanism for large amounts of DNA chip data, and show through experimental results that the clustering technique using the PSO algorithm provides a faster yet good quality result compared with other existing clustering solutions.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.05a
/
pp.93-96
/
2011
본 논문에서는 개선된 FCM 알고리즘을 적용하여 통계청에서 제공하는 한국 표준 질병 사인 분류표(K.C.D)를 기초로 질병을 분류한 후, 질병을 도출하고 애매한 증상의 차이의 정도를 퍼지 추론기법을 사용하여 정확한 질병 상세를 도출할 수 있는 한방 질병 분류 시스템을 제시한다. 기존의 FCM 알고리즘은 입력 벡터들과 각 군집 중심과의 거리를 이용하여 측정된 유사도에 기초한 목적 함수의 최적화 방식을 사용한다. 하지만 측정된 패턴과 군집 공간상의 패턴들의 분포에 따라 바람직하지 못한 군집화 결과를 보일 수 있다. 따라서 본 논문에서는 군집들의 대칭성 측도에 퍼지 이론을 적용하여 기존의 FCM 알고리즘으로 군집화 한 결과를 재 군집화 하여 군집화의 정확성을 개선시킨 후, 증상의 차이를 구분하기 위해서 애매한 증상의 정도를 퍼지 추론 방법을 적용하여 정확한 질병 상세를 도출할 수 있는 방법을 제시한다. 본 논문에서는 개선된 FCM 알고리즘을 적용하여 질병을 분류한 후, 퍼지 제어 기법으로 질병을 추출함으로써 기존의 한방 자가진단 시스템 보다 정확하게 질병을 도출한 것을 확인하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.251-256
/
2022
범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.577-579
/
2003
본 논문에서는 생체인식 분야 중 얼굴인식의 검색 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인종별 얼굴영상 데이터베이스에 대한 군집화 기법을 연구하였다. 우선, 일반적으로 얼굴 및 이미지 검색에 사용되는 다양한 특징을 추출하고, 추출한 다차원의 특징 데이터들로부터 다 인종 얼굴 데이터를 유사한 인종별로 정확하게 군집화 하기 위해 최적의 특징벡터를 자동으로 선택 할 수 있는 방법을 제안하였다. 군집결과 분석을 위해 자기 조직화 지도 모형을 이용하였는데, 이는 2차원 분석 및 가시화에 유용하며, 학습 후 코드북벡터를 사용하여 유사한 의미간의 거리부터 검색할 수 있는 특징을 가지고 있다. 특징추출에 관한 실험결과 인종별 구분을 위한 특징벡터로는 웨이블릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인종별 군집화에 가장 유용한 특징으로 선택되었으며. 추출된 특징을 바탕으로 semantic map을 구성하여 제안방법의 효율성을 제시하였다.
An effective way to understand the dynamic and time series that follows the passage of time, as valuation is to establish a model to analyze the phenomena of the system. Model of the decision process is efficient clustering information of the total mass of the time series data of the relevant population been collected in a particular number of sub-groups than to look at all a time to an understand of the overall data through each community-specific model determination. In this study, a sub-grouping of the group and the first of the two process model of each cluster by determining, in the following in sub-population characterized by a fusion with heuristic Bayesian clustering techniques proposed a process which can reduce calculation time and cost was confirmed by experiments using actual effectiveness valuation.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.77-80
/
2002
이상치를 포함한 학습 데이터의 군집화 전략은 일반적으로 이상치를 포함하여 학습하거나, 이상치를 제거하는 두 가지 선택이 가능하다. 이상치를 제거하지 않고 학습에 반영시켜야 할 경우 한 개 또는 소수의 이상치가 독자적인 군집을 형성하거나 객관적인 군집화를 방해하는 문제가 발생할 수 있다. 이 때 주어진 학습 데이터의 군집 결과가 이상치의 영향으로부터 벗어나기 위해 원래의 학습 데이터에 대한 변환 작업을 거친 후 군집화를 수행할 수 있다. 이러한 변환 방법으로서 본 논문에서는 차원 축소의 기법으로 알려진 인자 분석의 점수를 사용하였다. 인자 점수로 변환된 학습 데이터에 대해 계층적 군집화, K-means 그리고 자기조직화 지도 등과 같은 군집화 알고리즘을 적용하면 이상치가 자신만의 군집을 별도로 형성하지 않고 다른 학습 데이터의 군집에 소속되면서 이상회의 영향으로부터 벗어남을 실험을 통하여 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.229-233
/
2005
모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.