• Title/Summary/Keyword: 군집의 크기

Search Result 355, Processing Time 0.026 seconds

Modeling Clustered Interval-Censored Failure Time Data with Informative Cluster Size (군집의 크기가 생존시간에 영향을 미치는 군집 구간중도절단된 자료에 대한 준모수적 모형)

  • Kim, Jinheum;Kim, Youn Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.331-343
    • /
    • 2014
  • We propose two estimating procedures to analyze clustered interval-censored data with an informative cluster size based on a marginal model and investigate their asymptotic properties. One is an extension of Cong et al. (2007) to interval-censored data and the other uses the within-cluster resampling method proposed by Hoffman et al. (2001). Simulation results imply that the proposed estimators have a better performance in terms of bias and coverage rate of true value than an estimator with no adjustment of informative cluster size when the cluster size is related with survival time. Finally, they are applied to lymphatic filariasis data adopted from Williamson et al. (2008).

Analysis of Microbial Community Change in Ganjang According to the Size of Meju (메주의 크기에 따른 간장의 미생물 군집 변화 양상 분석)

  • Ho Jin Jeong;Gwangsu Ha;Ranhee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.453-464
    • /
    • 2024
  • The fermentation of ganjang is known to be greatly influenced by the microbial communities derived from its primary ingredients, meju and sea salt. This study investigated the effects of changes in meju size on the distribution and correlation of microbial communities in ganjang fermentation, to enhance its fermentation process. Ganjang was prepared using whole meju and meju divided into thirds, and samples were collected at 7-day intervals over a period of 28 days for microbial community analysis based on 16S rRNA gene sequencing. At the genus level, during fermentation, ganjang made with whole meju exhibited a dominance of Chromohalobacter (day 7), Pediococcus (day 14), Bacillus (day 21), and Pediococcus (day 28), whereas ganjang made with meju divided into thirds consistently showed a Pediococcus predominance over the 28 days. Beta-diversity analysis of microbial communities in ganjang with different meju sizes revealed significant separation of microbial communities at fermentation days 7 and 14 but not at days 21 and 28 across all experimental groups. The linear discriminant analysis effect size (LEfSe) was determined to identify biomarkers contributing to microbial community differences at days 7 and 14, showing that on day 7, potentially halophilic microbes such as Gammaproteobacteria, Firmicutes, Oceanospirillales, Halomonadaceae, Bacilli, and Chromohalobacter were prominent, whereas on day 14, lactic acid bacteria such as Pediococcus acidilactici, Lactobacillaceae, Pediococcus, Bacilli, Leuconostocaceae, and Weissella were predominant. Furthermore, correlation analysis of microbial communities at the genus and species levels revealed differences in correlation patterns between meju sizes, suggesting that meju size may influence microbial interactions within ganjang.

Application of Gene Algorithm for the development of efficient clustering system (효율적인 군집화 시스템의 개발을 위해 유전자 알고리즘의 적용)

  • Hong, Gil-Dong;Kim, Cheol-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.277-280
    • /
    • 2003
  • 현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 다라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내어 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려한다.

  • PDF

The implementation of efficient pattern classification system using the gene algorithm (유전자 알고리즘을 이용한 효율적인 패턴 분류 시스템 구현)

  • 이호현;최용호;서원택;조범준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.792-795
    • /
    • 2002
  • 현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화 시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근 횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 따라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 LONGEPRO 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내여 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려 한다.

  • PDF

Object Movement Detection Integrating Robust Estimation and Clustering (강건 예측과 군집화를 결합한 물체의 움직임 감지)

  • Jang, Seok-Woo;Huh, Moon-Haeng;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 비디오 데이터로부터 물체의 초기 움직임 영역을 자동으로 검출하는 방법을 소개한다. 제안하는 시스템은 먼저 입력 영상을 받아들인 후 인접된 영상으로부터 일정 크기의 정방향의 블록 단위로 움직임을 나타내는 모션 벡터를 추출한다. 그리고 추출된 모션벡터를 아웃라이어를 제거하는 강건 예측 알고리즘에 적용하여 배경에 해당하는 모션벡터와 잡음 및 움직이는 물체에 해당하는 모션벡터를 구분한다. 그런 다음, 군집화 알고리즘을 적용하여 이동하는 물체를 나타내는 모션벡터를 군집화하고, 군집화된 모션벡터에 해당하는 영역의 크기가 일정 수치 값 이상일 때 움직이는 물체가 감지되었다고 판단한다. 본 논문의 실험에서는 제안된 물체의 움직임 감지 방법이 기존의 방법에 비해 성능이 보다 우수함을 보인다.

  • PDF

A Study on Gene Algorithm Application for Efficient Clustring of Data Mining (데이터 마이닝의 능률적인 군집화를 위한 유전자 알고리즘 적용에 관한 연구)

  • Choi, Ho-Jin;Hong, Sung-Pye
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.41-44
    • /
    • 2009
  • 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고, 군집들간의 유사성을 최소화 시키도록 데이터의 집합을 분할하는 것이다. 대용량의 데이터베이스에서 최적의 효율화를 내기 위해서는 원시데이터에 대한 접근 횟수를 줄이고, 이것을 알고리즘 적용 대상이 데이터 구조의 크기를 줄이는 군집화 기법에 많은 관심이 보이고 있다. 본 논문에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하는 적합도 함수는 보다 양질의 군집을 찾아내는 것으로 평가 되었다. 또한 유전자 알고리즘 중 8가지를 세부 분석하여 평가하였다.

  • PDF

Extraction of Basic Insect Footprint Segments Using ART2 of Automatic Threshold Setting (자동 임계값 설정 ART2를 이용한 곤충 발자국의 인식 대상 영역 추출)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1604-1611
    • /
    • 2007
  • In a process of insect footprint recognition, basic footprint segments should be extracted from a whole insect footprint image in order to find out appropriate features for classification. In this paper, we used a clustering method as a preprocessing stage for extraction of basic insect footprint segments. In general, sizes and strides of footprints may be different according to type and sire of an insect for recognition. Therefore we proposed an improved ART2 algorithm for extraction or basic insect footprint segments regardless of size and stride or footprint pattern. In the proposed ART2 algorithm, threshold value for clustering is determined automatically using contour shape of the graph created by accumulating distances between all the spots of footprint pattern. In the experimental results applying the proposed method to two kinds of insect footprint patterns, we could see that all the clustering results were accomplished correctly.

Multi-hierarchical Density-based Clustering Method (다계층 밀도기반 군집화 기법)

  • Shin, Dong Mun;Jung, Suk Ho;Yi, Gyeong Min;Lee, Dong Gyu;Sohn, GyoYong;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.797-798
    • /
    • 2009
  • 군집화는 대용량의 데이터로부터 유용한 정보를 추출하는 데에 적합한 데이터마이닝 기법들 중 하나이다. 군집화 기법은 주어진 데이터그룹 내에서 사전정보 없이 의미있는 지식을 발견할 수 있으므로 큰 어려움이 없이 실제 응용분야에 적용할 수 있다. 또한, 대용량 데이터를 다룰 때에 개별적인 데이터에 대한 접근 횟수를 줄이고, 알고리즘이 다루어야 할 데이터 구조의 크기를 줄일 수 있다. 본 논문에서는 밀도-기반 군집화 기법을 기반으로 하는 새로운 군집화 기법을 제안한다. 우리가 제안하는 군집화 기법은 반복적인 군집화 과정을 통하여 군집 내 주변 잡음을 제거하고 더 세밀하게 집단을 세분화하는 것이 가능하다. 또한, 군집을 표현하는 데에 계층구조로 나타내어 각 군집의 상관관계를 파악하는 데에 유리하다. 본 논문에서 제안하는 군집화 기법을 통하여 다양한 밀도를 가진 군집들을 효과적으로 분류할 수 있을 거라고 기대된다.

Analysis of Block FEC Symbol Size's Effect On Transmission Efficiency and Energy Consumption over Wireless Sensor Networks (무선 센서 네트워크에서 전송 효율과 에너지 소비에 대한 블록 FEC 심볼 크기 영향 분석)

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Young-Su
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.803-812
    • /
    • 2006
  • This paper analytically evaluates the FEC(Forward Error Correction) symbol size's effect on the performance and energy consumption of 802.11 protocol with the block FEC algorithm over WSN(Wireless Sensor Network). Since the basic recovery unit of block FEC algorithms is symbols not bits, the FEC symbol size affects the packet correction rate even with the same amount of FEC check bits over a given WSN channel. Precisely, when the same amount of FEC check bits are allocated, the small-size symbols are effective over channels with frequent short bursts of propagation errors while the large ones are good at remedying the long rare bursts. To estimate the effect of the FEC symbol site, the paper at first models the WSN channel with Gilbert model based on real packet traces collected over TIP50CM sensor nodes and measures the energy consumed for encoding and decoding the RS (Reed-Solomon) code with various symbol sizes. Based on the WSN channel model and each RS code's energy expenditure, it analytically calculates the transmission efficiency and power consumption of 802.11 equipped with RS code. The computational analysis combined with real experimental data shows that the RS symbol size makes a difference of up to 4.2% in the transmission efficiency and 35% in energy consumption even with the same amount of FEC check bits.

A Methodology to Establish Operational Strategies for Truck Platoonings on Freeway On-ramp Areas (고속도로 유입연결로 구간 화물차 군집운영전략 수립 방안 연구)

  • LEE, Seolyoung;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.67-85
    • /
    • 2018
  • Vehicle platooning through wireless communication and automated driving technology has become realized. Platooning is a technique in which several vehicles travel at regular intervals while maintaining a minimum safety distance. Truck platooning is of keen interest because it contributes to preventing truck crashes and reducing vehicle emissions, in addition to the increase in truck flow capacity. However, it should be noted that interactions between vehicle platoons and adjacent manually-driven vehicles (MV) significantly give an impact on the performance of traffic flow. In particular, when vehicles entering from on-ramp attempt to merge into the mainstream of freeway, proper interactions by adjusting platoon size and inter-platoon spacing are required to maximize traffic performance. This study developed a methodology for establishing operational strategies for truck platoonings on freeway on-ramp areas. Average speed and conflict rate were used as measure of effectiveness (MOE) to evaluate operational efficiency and safety. Microscopic traffic simulation experiments using VISSIM were conducted to evaluate the effectiveness of various platooning scenarios. A decision making process for selecting better platoon operations to satisfy operations and safety requirements was proposed. It was revealed that a platoon operating scenario with 50m inter-platoon spacing and the platoon consisting of 6 vehicles outperformed other scenarios. The proposed methodology would effectively support the realization of novel traffic management concepts in the era of automated driving environments.