통계학이란 미래에 대한 예측을 하고 이에 대비하여 합리적인 의사결정을 내리는데 도움을 받을 수 있는 학문이다. 최근 다변량 통계분석은 관찰이나 실험의 대상이 되는 하나 이상의 변수들을 동시에 분석할 수 있는 매우 실제성이 높은 분석방법으로 통계학, 경영학, 사회학, 심리학, 생물학 등 여러 전공 분야에서 복잡하고 다양한 자료 분석에 폭넓게 활용되고 있다. 이 논문에서는 다변량 분석 방법 중 컴퓨터와 통계 분석 소프트웨어의 발전으로 인하여 최근에 활발히 연구되고 있는 군집방법의 역사와 여러 연구분야의 실제자료분석에 응용할 수 있도록 군집분석을 6가지로 나누어서 분류하였고 그 방법론을 제시하였다.
연안 매립을 포함하는 방파제의 건설이나 호안의 건설은 자연적인 해류의 흐름을 방해하는 인위적 교란으로 나타나며 그에 따른 수력학적 변화에 의해 퇴적학적 특성은 물론 지형학적 변화를 유발하게 된다. 이러한 물리적 환경의 변화가 저서생물의 유생의 분포, 먹이입자의 퇴적작용, 그리고 퇴적상의 변화를 초래하고 결국 저서동물군집의 구조에 변화를 주게 된다(Seys et al., 1994). (중략)
웹 로그 기반의 웹 사용 마이닝은 명시적 평가 의존, 확장성 결여, 그리고 다차원 및 희박한 데이터에 성능이 떨어지는 협력적 여과의 문제를 다소 해결할 수 있다. 그러나 k-Means 군집화 방법으로 생성된 군집속 유사 사용자 이동 패턴으로는 클러스터속 사용자 전체의 선호도를 표현할 수 없으므로 사용자 이동 패턴인 트랜잭션들로부터 사용 프로파일을 유도해야 한다. 본 논문에서는 유사 군집 사용자들의 관심과 기호를 표현할 수 있도록 클러스터 내부 데이타로부터 평균 가중치 및 빈발 지지도 임계값을 사용하여 개선된 사용 프로파일을 생성하고 실험 데이터를 통한 예측력과 추천에 대한 성능을 평가한다.
본 연구에서는 국가물관리기본계획의 2030년 물부족량 전망자료를 이용하여 공간군집특성을 고려한 우리나라 물부족 핫스팟 지역을 분석하였다. 물부족 최심 군집지역 도출을 위하여 표준유역 기준의 과거 최대 가뭄(약 50년 빈도)에 대한 물부족량 자료를 이용하여, Local Moran's I와 Getis-Ord Gi* 통계량으로 공간군집분석을 수행하였다. 클러스터맵(Cluster Map)을 통해 물부족 공간군집 대상지역을 선정하고, 공간적 군집 특성은 p-값 및 모란 산점도를 통해 적정성을 검증하였다. 분석 결과, 한강권역 내 1개 군집[임진강하류(#1023) 및 주변]과 낙동강권역 내 2개 군집 [대종천(#2403) 및 주변, 가화천(#2501) 및 주변] 지역이 물부족이 심각한 핫스팟 지역으로 나타났으며, 한강권역 내 1개 군집[남한강하류 (#1007) 및 주변]과 낙동강권역 내 1개 군집[병성천(#2006) 및 주변] 지역이 물부족 HL (해당지역은 물부족량이 많고 주변지역은 물부족량이 적은) 지역으로 나타났다. 표준유역단위 공간군집분석을 수행할 경우 물부족 공간군집지역 전체가 통계량 기준을 100% 만족하여 통계적으로 유의미한 결과가 도출되었다. 이는 표준유역 단위로 공간군집분석을 할 경우 가변적 공간단위 문제를 일정 부분 해결한 것으로 공간군집분석의 정확성이 상대적으로 높아졌다.
소백산 천동계곡 삼림의 식물군집구조분석을 위하여 20개소에 조사구(1개조사구당 20$\times$25m)를 설정하고 식생조사를 실시하여 얻은 자료에 대하여 TWINSPAM에 의한 classification과 DCA ordination기법을 적용하여 분석하였고 환경인자와 식생과의 관계를 CCA기법으로 분석하였다. TWINSPAN 과 DCA에 의하여 4개 군집인 소나무군집, 굴참나무-신갈나무-소나무군집, 신갈나무군집, 물푸레나무군집으로 분리되었다. 교목상층군의 천이는 소나무$\longrightarrow$신갈나무, 굴참나무$\longrightarrow$물푸레나무로 추정되었다. CCA에 의한 ordination분석에서는 토양내의 pH. 유기물함량, $Ca^{++}$함량, $Mg^{++}$함량과 제 1, 2축과의 상관성이 인정되었고, 유기물, $Mg^{++}$함량과 물푸레나무군집 그리고 pH와 소나무군집과의 상관관계가 인정되었다. 그러나 환경인자와 수종과의 관계는 명료하지 않았다.
단세포 RNA 시퀀싱 데이터(single-cell RNA-sequencing data, 이하 단세포 RNA 데이터)는 세포 조직으로부터 추출한 각 단세포 별 유전자의 신호를 기록한 데이터로, 세포 간의 이질성을 파악하는 것을 주요 목적으로 한다. 그러나 단세포 RNA 데이터는 샘플링 및 기술적인 한계로 인해 결측비율이 높고, 노이즈가 크다. 이러한 이유 때문에 기존의 군집화 방법을 적용하는 데에 한계가 존재한다. 본 논문에서는 단세포 RNA 데이터 분석에서 모티브를 얻어 스펙트럼 군집화(spectral clustering) 기반의 방법을 제안한다. 특히 유사도 행렬(similarity matrix) 계산에서 유전자 별로 가중치를 부여하여 기존의 단세포 데이터 분석 방법과 차별화하였다. 제안하는 군집화 방법은 유전자별 가중치를 부여함과 동시에 세포를 군집화한다. 군집화는 반복 알고리즘을 통해 제안하는 비볼록식(non-convex optimization)을 풀어 진행한다. 또한 실데이터 적용과 시뮬레이션을 통해 제안하는 군집화 방법이 기존의 방법보다 군집을 잘 구분하는 것을 보인다.
다환 방향족 탄화수소(PAHs)에 의한 오염이 미생물군집구조에 미치는 영향을 파악하기 위하여 연안에 가까운 광양만 퇴적토를 대상으로 하여 2000년 3월과 8월 2회에 걸쳐 PAHs 오염도와 말단제한절편 다형성 (T-RFLP)분석방법을 이용하여 미생물 군집구조를 조사하였다. T-RFLP방법으로 조사한 미생물 군집은 계절에 따라 군집이 구분되었으며 월내천입구에 위치한 정점 1에서 3월에 다른 정점과 다른 독특한 군집구조를 형성하였다. 또한 상대적으로 PAHs 오염도가 높은 정점들에서 미생물 다양성도 높은 것으로 나타났다. PAHs 농후배양시료에서의 미생물군집구조 변화와 비교해 볼 때 조사대상지역 퇴적토의 미생물 군집구조는 PAHs의 오염에 부분적으로는 영향을 받지만 군집구조를 결정하는 주된 요인은 온도, 입도, 유기물 함량 등과 같은 환경요인인 것으로 사료된다.
대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.
본 논문에서는 학습 예측이 가능한 군집적 알고리즘으로 COVID-19에서 상황인식정보인 질병의 속성정보와 클러스터링를 이용한 군집적 알고리즘을 제안한다. 클러스터링 내에서 처리되는 군집 데이터는 신규 또는 새롭게 입력되는 정보가 상호관계를 예측하기 위해 분류 제공되는데, 이때 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리되면 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 COVID-19에서의 질병속성 정보내 K-means알고리즘을 이용함에 있어 이러한 문제를 해결하기 위해 질병 상호관계 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 자율적인 사용자 군집 특징의 상호관계를 분석학습하고 이를 통하여 사용자 질병속성간에 따른 클러스터를 구성해 사용자의 누적 정보로부터 클러스터의 중심점을 제공하게 된다. 논문에서 제안된 COVID-19의 다중질병 속성정보군집단위로 분류하고 학습하는 알고리즘은 적용한 모의실험 결과를 통해 사용자 관리 시스템의 예측정확도가 학습과정에서 향상됨을 보여주었다.
산불로 훼손된 토양 미생물군집의 생화학적, 유전적 다양성을 비교하기 위하여 2000년에 산불이 일어났던 강릉지역에서 자연복원지 토양(NS), 인공복원지 토양(AS), 정상토양(NS)을 표토층과 심토층에서 채집하였다. 생화학적 다양성 분석을 위해 각 시료를 BIOLOG system에 직접 적용하였으며 통계처리(SPSS)를 통해 군집분석을 수행하였다. 또한 군집의 유전적 다양성은 토양 미생물의 16S-rDNA를 증폭하여 DGGE(Denaturing Gradient Gel Electrophoresis)를 이용하여 분석하였다. 자연복원지의 심토와 표토, 정상토양의 표토에서만 70% 이상의 생화학적 다양성이 나타났으나, 유전적 다양성의 경우 모든 시료에서 53%에서 68%의 범위의 상동성을 나타냈다. 이러한 결과는 토양미생물 군집의 생화학적 다양성이 반드시 유전적 다양성을 반영하지 않는다는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.