• Title, Summary, Keyword: 군집분석

Search Result 3,298, Processing Time 0.05 seconds

Analysis on the Forest Community Structure of the Area of Donghaksa-Nammaetap. Kyeryongsan National Park (계룡산국립공원 동학사-납매탐구간의 삼림군집구조 분석)

  • 최송현;조현서
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.4
    • /
    • pp.252-267
    • /
    • 2001
  • 계룡산국립공원 동학사-남매탑구간의 산림군집구조를 분석하기 위하여 64개 조사구를 설정하고 식생구조를 실시하였다. Classification의 기법 중 하나인 TWINSPAN을 이용하여 군집분리를 시도하였으며, 그 결과 소나무 군집(I), 굴참나무-소나무군집(II), 서어나무-굴참나무군집(III), 굴참나무-졸참나무군집(IV), 서어나무-까지박달군집(V), 신갈나무-서어나무군집(VI), 느티나무-졸참나무군집(VII) 그리고 느티나무군집(VIII)의 8개로 분리되었다. 연륜분석결과 이지역의 임령은 약 60년 안팍이었으며, 단위면적(100$\m^2$)당 평균출현종수는 15.0$\pm$3.2종. 평균출현개체수는 95.7$\pm$37.3주었다. 이상의 결과를 통해 계룡산국립공원이 동학사-남매탑구간 지역은 소나무림에서 굴참나무, 졸참나무, 신갈나무림을 거쳐 서어나무, 까지박달림으로 천이가 진행될것으로 예상되었다.

  • PDF

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

K-모드 알고리즘과 ROCK 알고리즘의 비교 및 개선방안

  • 김보화;김규성
    • Proceedings of the Korean Statistical Society Conference
    • /
    • /
    • pp.163-167
    • /
    • 2001
  • 데이터 마이닝에서 분석의 대상으로 하는 대용량 자료에는 연속형 자료와 범주형 자료가 모두 포함된다. 전통적인 군집분석은 연속형 자료를 대상으로 하는 방법들이다. 본 연구에서는 범주형 자료를 대상으로 하는 군집분석방법인 K-모드 알고리즘과 락(ROCK) 알고리즘을 비교${\cdot}$분석하였다. 그리고 두 알고리즘이 갖는 방법론적인 단점을 보안하여 군집의 효과를 높일 수 있는 개선 방안을 제안하였다.

  • PDF

웹로그 데이터에 대한 군집분석 알고리즘에 관한 연구

  • Gang, Hyeon-Cheol;Han, Sang-Tae;Seon, Yeong-Su
    • Proceedings of the Korean Statistical Society Conference
    • /
    • /
    • pp.313-318
    • /
    • 2003
  • 최근 인터넷은 기업이 고객과 접촉할 수 있는 새로운 수단으로써 기업의 홍보나 서비스를 제공하는 기능을 수행할 뿐만 아니라 사업을 위한 중요한 도구로 여겨지고 있다. 따라서 방문자의 웹사이트 이용형태를 파악하기 위한 다양한 기법들이 제시되고 있으며, 웹로그 데이터에 대한 자료분석 기법들이 여러 학문분야에서 연구되고 있다. 본 연구에서는 웹로그 데이터에 대한 군집분석을 위해 거리측도 및 분석 알고리즘을 제안하였으며, 실제 자료에 이를 적용하여 제안된 알고리즘의 특성을 살펴보았다.

  • PDF

Functional clustering for clubfoot data: A case study (클럽발 자료를 위한 함수적 군집 분석: 사례연구)

  • Lee, Miae;Lim, Johan;Park, Chungun;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1069-1077
    • /
    • 2014
  • A clubfoot is a kind of congenital deformity of foot, which is internally rotated at the ankle. In this paper, we are going to cluster the curves of relative differences between regular and operated feet. Since these curves are irregular and sparsely sampled, general clustering models could not be applied. So the clustering model for sparsely sampled functional data by James and Sugar (2003) are applied and parameters are estimated using EM algorithm. The number of clusters is determined by the distortion function (Sugar and James, 2003) and two clusters of the curves are found.

A Review of Cluster Analysis for Time Course Microarray Data (시간 경로 마이크로어레이 자료의 군집 분석에 관한 고찰)

  • Sohn In-Suk;Lee Jae-Won;Kim Seo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.13-32
    • /
    • 2006
  • Biologists are attempting to group genes based on the temporal pattern of gene expression levels. So far, a number of methods have been proposed for clustering microarray data. However, the results of clustering depends on the genes selection, therefore the gene selection with significant expression difference is also very important to cluster for microarray data. Thus, this paper present the results of broad comparative studies to time course microarray data by considering methods of gene selection, clustering and cluster validation.

Cluster analysis with Korean weather data: Application of model-based Bayesian clustering method (한국 기상자료의 군집분석: 베이지안 모델기반 방법의 응용)

  • Joo, Yong-Sung;Jung, Hyung-Joo;Kim, Byung-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • In this paper, 30 main cities are clustered based on precipitation, temperature, wind speed, photo period, and humidity. We found that the resulting clusters has strong relationships with geographical locations. These results make sense because, although Korea is a small country, Korean weather is known to have strong locality. The largest number of clusters is found when wind speed is used as an interested variable for clustering and the smallest number of clusters is found when photo period is used. The large number of clusters based on wind speed indicates that wind speed is affected easily by local geography.

  • PDF

A Study on the Relationship between Lifestyle and the Use of Internet Banking (라이프스타일에 따른 인터넷뱅킹 이용에 관한 연구)

  • Jo, Nam-Jae;Lee, Gi-Yeong;Son, Ji-Ho
    • 한국디지털정책학회:학술대회논문집
    • /
    • /
    • pp.391-410
    • /
    • 2005
  • 본 연구에서는 응답자들의 라이프스타일을 먼저 몇 개의 요인으로 분석 한 후, 도출된 요인들을 다시 군집분류를 하였다. 추출된 군집들에 따라 인터넷 뱅킹 신뢰성과 인지도 그리고 소득수준이 인터넷 뱅킹 이용도에 어떤 차이를 보이는지 분석하였고, 전체 군집에서 나온 결과와 어떤 차이를 보이는지 비교 분석 해보았다. 그 결과 라이프스타일에 따라 4개의 군집이 분류되었으며, 군집1을 '적극적 활동형', 군집 2를 '현실적 가족형', 군집 3을 '전통적 보수형', 군집 4를 '소극적 비활동형'으로 명명하였다. 군집들에 따라 신뢰성, 인지도, 소득수준이 인터넷 뱅킹 이용에 영향을 미치는지에 대한 연구 결과로는 전체군집에서는 소득에만 영향을 받았으나 군집을 세분화하여 세분화된 군집별로 알아본 결과 전체 군집과는 달리 '적극적 활동형'은 신뢰성, '전통적 보수형'과 '소극적 비활동형'은 소득수준, 그리고 현실적 가족형은 아무 영향을 받지 않는 것으로 보아 시장을 세분화 하였을 경우와 세분화 하지 않았을 경우의 연구 결과는 다르다는 결론을 얻어냈으며, 인터넷 뱅킹 활성화에 있어서도 라이프스타일에 따른 고객 세분화는 큰 의미가 있다.

  • PDF

Cluster Analysis of Snowfall Observatory Using K-means Algorithm (K-평균 알고리즘을 이용한 적설관측소 군집분석)

  • Lee, Munseok;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • /
    • pp.412-412
    • /
    • 2018
  • 최근 지구온난화의 영향으로 겨울철 한파를 야기하는 일이 잦아지고 있다. 우리나라에도 그 영향으로 매년 겨울 한파가 지속되고 있다. 그러므로 겨울철 적설량을 기록하고 갑작스러운 재난에 대비하는 것은 지구온난화의 또 다른 숙제가 되었다. 우리나라는 전통적으로 폭설 피해가 크지 않았기 때문에 적설관측소의 수가 강우관측소에 비해 현저히 적다. 그리하여 추가적인 적설관측소의 설치가 필요하다고 판단되지만, 이에 앞서 우리나라의 현재 적설관측소의 분포현황을 분석하였다. 1월, 2월, 12월의 최대 최심신적설량과 관측소 고도자료를 K-평균 알고리즘의 4개의 변수로 사용하였으며, 전국에서 총 94개의 적설관측소를 자료보유기간으로 분류하여 군집분석을 수행하였다. 군집분석 결과 서해안지역, 태백 소백산맥을 따라 존재하는 내륙산악지역, 경상도와 남해안 그리고 제주도지역, 울릉도와 대관령으로 군집이 형성되었다. 또한, 제주도의 적설관측소가 해안가 위주로 설치되어있어, 비교적 눈이 많이 오는 한라산 산간지역에 추가적인 적설관측소 설치가 고려되어야 할 것이다.

  • PDF

News Clustering and Multi-Document Summarization for Real-time Issue Analysis (실시간 이슈 분석을 위한 뉴스 군집화 및 다중 문서 요약)

  • Yu, Hongyeon;Lee, Seungwoo;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.132-137
    • /
    • 2018
  • 뉴스 기반의 실시간 이슈 분석을 위해서는 실시간으로 생성되는 다중 뉴스 기사 집합을 입력으로 받아 점증적으로 군집화 하고, 각 군집별 정보를 자동으로 요약하는 기술이 필요하다. 기존에는 정적인 데이터 기반의 군집화와 요약 각각에 대한 연구는 활발히 진행되고 있지만, 실시간으로 입력되는 대량의 데이터를 위한 점증적인 군집화와 요약에 대한 연구는 매우 부족하다. 따라서 본 논문에서는 실시간으로 입력되는 대량의 뉴스 기사 집합을 분석하기 위한 점증적이고 계층적인 뉴스 군집화 및 다중 문서 요약 방법을 제안한다. 평가를 위해서 2016년 10월, 11월 두 달간의 실제 데이터를 사용 하였으며, 전문 교육을 받은 연구원들이 Precision at k 기반의 정성평가를 진행하였다. 그 결과, 자동으로 생성된 12개의 군집에서 군집 성능은 평균 66% (상위계층 $l_1$: 82%, 하위계층 $l_2$: 43%), 요약 성능은 평균 92%를 얻었다.

  • PDF