• Title/Summary/Keyword: 국지적 자기상관

Search Result 32, Processing Time 0.03 seconds

An Application of Network Autocorrelation Model Utilizing Nodal Reliability (집합점의 신뢰성을 이용한 네트워크 자기상관 모델의 연구)

  • Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.492-507
    • /
    • 2008
  • Many classical network analysis methods approach networks in aspatial perspectives. Measuring network reliability and finding critical nodes in particular, the analyses consider only network connection topology ignoring spatial components in the network such as node attributes and edge distances. Using local network autocorrelation measure, this study handles the problem. By quantifying similarity or clustering of individual objects' attributes in space, local autocorrelation measures can indicate significance of individual nodes in a network. As an application, this study analyzed internet backbone networks in the United States using both classical disjoint product method and Getis-Ord local G statistics. In the process, two variables (population size and reliability) were applied as node attributes. The results showed that local network autocorrelation measures could provide local clusters of critical nodes enabling more empirical and realistic analysis particularly when research interests were local network ranges or impacts.

  • PDF

An Alternative Method for Assessing Local Spatial Association Among Inter-paired Location Events: Vector Spatial Autocorrelation in Housing Transactions (쌍대위치 이벤트들의 국지적 공간적 연관성을 평가하기 위한 방법론적 연구: 주택거래의 벡터 공간적 자기상관)

  • Lee, Gun-Hak
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.564-579
    • /
    • 2008
  • It is often challenging to evaluate local spatial association among onedimensional vectors generally representing paired-location events where two points are physically or functionally connected. This is largely because of complex process of such geographic phenomena itself and partially representational complexity. This paper addresses an alternative way to identify spatially autocorrelated paired-location events (or vectors) at a local scale. In doing so, we propose a statistical algorithm combining univariate point pattern analysis for evaluating local clustering of origin-points and similarity measure of corresponding vectors. For practical use of the suggested method, we present an empirical application using transactions data in a local housing market, particularly recorded from 2004 to 2006 in Franklin County, Ohio in the United States. As a result, several locally characterized similar transactions are identified among a set of vectors showing various local moves associated with communities defined.

  • PDF

A Spatial Statistical Approach on the Correlation between Walkability Index and Urban Spatial Characteristics -Case Study on Two Administrative Districts, Busan- (도시 공간특성과 Walkability Index의 상관성에 관한 공간통계학적 접근 -부산광역시 2개 구를 대상으로-)

  • Choi, Don Jeong;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.343-351
    • /
    • 2014
  • The correlation between regional Walkability Index and their physical socio-economic characteristics has evaluated by the spatial statistical analysis to understand the urban pedestrian environments, where has been emerging the significance, recently. Following to the study, the Walkability Indexes were calculated quantitatively from two administrative districts of Busan and measured Global Local spatial autocorrelation indices. Additionally, the Geographically Weighted Regression model was applied to define the correlation between Walkability Indexes and urban environmental variables. The spatial autocorrelation values and clusters on the Walkability Indexes were derived in statistically significant level. Furthermore, the Geographically Weighted Regression model has been derived more improved inference than the OLS regression model, so as the influence of local level pedestrian environment was identified. The results of this study suggest that the spatial statistical approach can be effective on quantitative assessing the pedestrian environment and navigating their associated factors.

Spatial Autocorrelation Characteristic Analysis on Bayesian ensemble Precipitation of Nakdong River Basin (낙동강유역 강우의 공간자기상관 특성분석을 통한 베이지안 앙상블 강우 검증)

  • Moon, Soo Jin;Sun, Ho Young;Kang, Boo Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.411-411
    • /
    • 2017
  • 유역 내 발생하는 강우의 공간적인 분포는 인접성 및 거리에 따라 달라질 수 있다. 공간자기상관 분석은 공간단위(유역 또는 행정구역)의 변수(강수 등)가 주변지역과 갖는 관계를 통해 얼마나 분산되어 있는지 혹은 군집되어 있는지를 판별하는 기법으로 최근 많은 연구에서 활성화 되고 있다. 본 연구에서는 낙동강유역을 대상으로 1980~2000년까지 20개년의 기상청을 통해 수집한 강우자료와 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 가용할 수 있는 20개 모델의 강우를 수집하였다. 기후변화 자료는 정상성 분위사상법으로 지역오차보정을 실시하고 불확실성을 저감하고자 베이지안 모델 평균기법을 통해 새로운 시계열을 생성하였다. 생성된 시계열의 공간적인 분포를 정량적으로 평가하고자 중권역별 공간자기상관 분석을 수행하였다. 대부분의 연구에서는 GIS를 활용하여 정성적으로 강우의 분포를 나타내고 있지만 본 연구에서는 공간단위의 인접성 또는 거리에 따른 척도를 기반으로 공간자기상관을 탐색할 수 있는 Moran's I와 LISA(Local Indicators of Spatial Association)기법을 적용하였다. Moran's I는 전체 연구지역에 대한 관계를 하나의 값으로 보여주는 전역적인 기법이며, LISA는 상대적으로 넓은 지역을 국지적으로 구분하여 특정지역에 대한 Hot spot 및 Cold spot을 통해 공간자기상관 정도를 나타내는 국지적인 기법이다. 두 기법을 적용하기 위하여 인접성 기반의 공간매트릭스를 산정하고 계절별 관측값과 베이지안 앙상블 강우의 Moran's I 및 LISA 분석을 실시하였다. 관측자료와 베이지안 앙상블 강우의 분석결과가 매우 유사하게 나타남으로써 베이지안 앙상블 강우의 공간적인 분포가 관측강우를 충분히 재현하고 있다고 판단된다.

  • PDF

Application of Spatial Autocorrelation for the Spatial Distribution Pattern Analysis of Marine Environment - Case of Gwangyang Bay - (해양환경 공간분포 패턴 분석을 위한 공간자기상관 적용 연구 - 광양만을 사례 지역으로 -)

  • Choi, Hyun-Woo;Kim, Kye-Hyun;Lee, Chul-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.60-74
    • /
    • 2007
  • For quantitative analysis of spatio-temporal distribution pattern on marine environment, spatial autocorrelation statistics on the both global and local aspects was applied to the observed data obtained from Gwangyang Bay in South Sea of Korea. Global indexes such as Moran's I and General G were used for understanding environmental distribution pattern in the whole study area. LISAs (local indicators of spatial association) such as Moran's I ($I_i$) and $G_i{^*}$ were considered to find similarity between a target feature and its neighborhood features and to detect hot spot and/or cold spot. Additionally, the significance test on clustered patterns by Z-scores was carried out. Statistical results showed variations of spatial patterns quantitatively in the whole year. Then all of general water quality, nutrients, chlorophyll-a and phytoplankton had strong clustered pattern in summer. When global indexes showed strong clustered pattern, the front region with a negative $I_i$ which means a strong spatial variation was observed. Also, when global indexes showed random pattern, hot spot and/or cold spot were/was found in the small local region with a local index $G_i{^*}$. Therefore, global indexes were useful for observing the strength and time series variations of clustered patterns in the whole study area, and local indexes were useful for tracing the location of hot spot and/or cold spot. Quantification of both spatial distribution pattern and clustering characteristics may play an important role to understand marine environment in depth and to find the reasons for spatial pattern.

  • PDF

A Study on the Spatial Distribution Patterns of Urban Green Spaces Using Local Spatial Autocorrelation Statistics (국지적 공간자기상관통계를 이용한 도시녹지의 공간적 분포패턴에 관한 연구)

  • Kim, Yun-Ki
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.25-45
    • /
    • 2020
  • The primary purpose of this study is to compare and analyze the performance of local spatial autocorrelation techniques in identifying spatial distribution patterns of green spaces. To achieve the objective, this researcher uses satellite image analysis and spatial autocorrelation techniques. The result of the study shows that the LISA cluster map with the spatial outlier cluster is superior to other analytical methods in identifying the spatial distribution pattern of urban green space. This study can contribute to the related fields in that it uses several different research methods than the existing ones. Despite this differentiation and usefulness, this study has limitations in using low-resolution satellite imagery and NDVI among vegetation indices in identifying spatial distribution patterns of green areas. These limitations may be overcome in future studies by using UAV images or by simultaneously using several vegetation indices.

Analysis of Spatial Structure in Geographic Data with Changing Spatial Resolution (해상도 변화에 따른 공간 데이터의 구조특성 분석)

  • 구자용
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.243-255
    • /
    • 2000
  • The spatial distribution characteristics and patterns of geographic features in space can be understood through a variety of analysis techniques. The scale is one of most important factors in spatial analysis techniques. This study is aimed at identifying the characteristics of spatial data with a coarser spatial resolution and finding procedures for spatial resolution in operational scale. To achieve these objectives, this study selected LANSAT TM imagery for Sunchon Bay, a coastal wetland for a study site, applied the indices for representing scale characteristics with resolution, and compared those indices. Local variance and fractal dimension developed by previous studies were applied to measure the textual characteristics. In this study, Moran s I was applied to measure spatial pattern change of variance data which were generated from the process of coarser resolution. Drawing upon the Moran s I of variancedata was optimum technique for analysing spatial structure than those of previous studies (local variance and fractal dimension). When the variance data represents maximum Moran´s I at certainly resolution, spatial data reveals maximum change at that resolution. The optimum resolution for spatial data can be explored by applying these results.

  • PDF

An Analysis on the Characteristics in Spatial Distribution of Consumer Organizations (소비자단체의 공간적 분포 특성)

  • Ko, Daekyun;Han, Jihyung
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.45-55
    • /
    • 2018
  • The purpose of this study was to provide the necessary data to explore the development plans of consumer organizations by looking at the spatial distribution of consumer organizations. This is because community-based consumer organizations can propose concrete measures to solve consumer problems more effectively. In this study, data of 11 consumer organizations and 815 branches were collected and analyzed using local indicators of spatial distribution and spatial lag model. First, it was difficult to find patterns according to the geographical characteristics of the spatial distribution of consumer organizations. Second, consumer organizations were more distributed in areas with large populations and businesses and large areas. Third, there is a discrepancy between the demand and supply of consumer organizations when compared with the number of consumer counseling. Based on this, it is necessary to constantly seek concrete development plans by supplementing the qualitative data on the activities of consumer organizations.

An Empirical Study on the Spatial Effect of Distribution Patterns between Small Business and Social-environmental factors (소상공인 점포의 분포와 환경요인의 공간적 영향관계에 관한 실증연구)

  • YOO, Mu-Sang;CHOI, Don-Jeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This research measured and visualized the spatial dependency and the spatial heterogeneity of the small business in Cheonan-si, Asan-si with $100m{\times}100m$ grids based on global and local spatial autocorrelation. First, we confirmed positive spatial autocorrelation of small business in the research area using Moran's I Index, which is ESDA(Exploratory Spatial Data Analysis). And then, through Getis-Ord $GI{\ast}$, one kind of LISA(Local Indicators of Spatial Association), local patterns of spatial autocorrelation were visualized. These verified that Spatial Regression Model is valid for the location factor analysis on small business commercial buildings. Next, GWR(Geographically Weighted Regression) was used to analyze the spatial relations between the distribution of small business, hourly mobile traffic-based floating population, land use attributes index, residence, commercial building, road networks, and the node of traffic networks. Final six variables were applied and the accessibility to bus stops, afternoon time floating population, and evening time floating population were excluded due to multicollinearity. By this, we demonstrated that GWR is statistically improved compared to OLS. We visualized the spatial influence of the individual variables using the regression coefficients and local coefficients of determinant of the six variables. This research applied the measured population information in a practical way. Reflecting the dynamic information of the urban people using the commercial area. It is different from other studies that performed commercial analysis. Finally, this research has a differentiated advantage over the existing commercial area analysis in that it employed hourly changing commercial service population data and it applied spatial statistical models to micro spatial units. This research proposed new framework for the commercial analysis area analysis.

Nonlinear Analog of Autocorrelation Function (자기상관함수의 비선형 유추 해석)

  • Kim, Hyeong-Su;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.731-740
    • /
    • 1999
  • Autocorrelation function is widely used as a tool measuring linear dependence of hydrologic time series. However, it may not be appropriate for choosing decorrelation time or delay time ${\tau}_d$ which is essential in nonlinear dynamics domain and the mutual information have recommended for measuring nonlinear dependence of time series. Furthermore, some researchers have suggested that one should not choose a fixed delay time ${\tau}_d$ but, rather, one should choose an appropriate value for the delay time window ${\tau}_d={\tau}(m-1)$, which is the total time spanned by the components of each embedded point for the analysis of chaotic dynamics. Unfortunately, the delay time window cannot be estimated using the autocorrelation function or the mutual information. Basically, the delay time window is the optimal time for independence of time series and the delay time is the first locally optimal time. In this study, we estimate general dependence of hydrologic time series using the C-C method which can estimate both the delay time and the delay time window and the results may give us whether hydrologic time series depends on its linear or nonlinear characteristics which are very important for modeling and forecasting of underlying system.

  • PDF