• Title/Summary/Keyword: 국어정보 질의응답

Search Result 10, Processing Time 0.018 seconds

Keyword Extraction for Korean Language Q&A (국어정보 질의응답을 위한 키워드 추출)

  • Jong, Jong-Seok;Lee, Su-In;Lee, Hyun-A
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.213-215
    • /
    • 2015
  • 국립국어원 온라인가나다에서 제공되는 질의응답 문서를 이용한 국어정보에 대한 Q&A시스템은 언어 자체에 대한 질문과 답변의 특성으로 조사나 어미로 끝나는 표현이 주어로 등장하는 등의 특이한 문장이 자주 나타난다. 이러한 이유로 형태소 분석을 거쳐 명사를 키워드로 추출하는 일반적인 키워드 추출 방식은 좋은 성능을 얻기 어렵다. 본 논문에서는 국어정보 질의응답 문서의 특징에 맞는 키워드 추출 방법을 제안한다. 제안하는 방식에서는 문장 단위로 분할된 결과에서 연결어미로 문장을 추가로 분할한 뒤에 조사 앞에 나타나는 단어열을 키워드로 추출한다. 덧붙여 다자비교형 질의에서의 키워드 추출을 위해 편집거리를 이용한 키워드 추출 방법을 제안한다.

  • PDF

Design and Implementation of a Korean Analysis System for Multi-lingual Query Answering (다국어 질의응답을 위한 한국어 해석 시스템 설계 및 구현)

  • Kang, Won-Seog;Hwang, Do-Sam
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.4
    • /
    • pp.43-50
    • /
    • 2004
  • Multi-lingual query answering system is the system which answers on the queries with several languages. LASSO[l] is the system that aims to answer the multi-lingual query. In this paper, we design and implement a Korean analysis system for LASSO. The Korean analysis system for query answering needs processing techniques of dialogue style. And the system must be practical and general so as to use on various domains. This system uses not dialogue processing techniques with high cost and low utility but heuristic rules with low cost and high utility. It is designed and implemented as a Korean interface of multi-lingual query answering system. The techniques of this system highly contribute to information retrieval and Korean analysis researches.

  • PDF

Feature Extraction for Community Question Answering System(cQA) considering Question Characteristic (질문 특성을 고려한 커뮤니티 질의응답 시스템(cQA) 자질 추출 방법)

  • Park, Yongmin;Kim, Bogyum;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.119-121
    • /
    • 2014
  • 커뮤니티 질의응답 시스템(cQA)은 기존에 구축된 '질문-답' 쌍에서 사용자의 질문과 비교하여 유사도 순으로 결과를 보여주는 시스템이다. 본 논문에서는 '국립국어원'의 질의응답 게시판에 적용 가능한 '커뮤니티 질의응답 시스템'을 소개하고, 국립국어원 질의응답 게시판의 질문 특성을 분석하여 cQA의 성능 향상을 위한 자질 추출 방법을 제시한다.

  • PDF

An Intelligent Character System Using Multi-Language Based Question Answering System (다국어 기반의 질의응답시스템을 활용한 지능형 케릭터 시스템)

  • Park, Hong-Won;Lee, Ki-Ju;Lee, Su-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.215-220
    • /
    • 2002
  • 질의응답시스템을 지능형 케릭터 시스템에 활용하기 위해서는 불특정한 주제에 대해 불특정 다수의 사용자와 대화할 수 있는 정교한 대화 모델이 필요하다. 이러한 대화 모델은 사용자의 질의문장을 인식하고 질의의도를 파악한 후 케릭터의 특정지식으로 접근하여 해당 지식을 사용자의 요구에 맞는 응답문의 형태로 생성해 내는 과정이 필수적으로 포함되어야 한다. 본 논문에서는 논의의 대상이 되는 질의응답시스템이 다국어 기반이라는 점을 고려하여 질의응답시스템을 지능형 케릭터에 활용하는 과정에서 케릭터의 지식구조 설계는 물론이고 질의문장 분석과 응답 문 생성의 방법론에 있어서도 한국어, 영어, 일본어, 중국어 각각의 언어적 특질을 반영함으로써 형태적, 통사적 차이로 인한 애로점을 최소화할 수 있도록 하였다.

  • PDF

Similar Question Search System for Q&A board of The National Institute of the Korean Language using Topic Classification (주제 분류를 활용한 국립국어원 질의응답 게시판 유사 질문 검색 시스템)

  • Mun, Jung-Min;Song, Yeong-Ho;Jin, Ji-Hwan;Lee, Hyun-Seob;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.201-205
    • /
    • 2014
  • 국립국어원의 온라인 가나다 서비스는 한국어에 대한 다양한 질문과 정확한 답변을 제공한다. 만일 새롭게 등록되는 질문에 대해 유사한 질문을 자동으로 찾을 수 있다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 국립국어원 질의응답게시판의 특성을 분석하여 질문의 주제를 6가지로 분류하고, 주제 분류 정보와 벡터 유사도, 수열 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용한 결과 1위 정답 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 MRR이 0.62, 정답이 1위, 5위내에 검색될 확률은 각각 54.2%, 78.2%를 보였다.

  • PDF

A Multi-lingual Question-Answering System on Relational Databases (관계형 데이터베이스 상에서의 다국어 질의 응답 시스템)

  • Jung, Han-Min;Lee, Gary Geun-Bae;Choi, Won-Seug;Min, Kyung-Koo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.530-537
    • /
    • 2001
  • 본 논문은 자연어 인터페이스에 기반한 관계형 데이터베이스 상에서의 질의 응답 시스템에 대해 기술한다. 본 시스템은 다국어, 다중 도메인, 다중 DBMS를 지원하는 시스템으로, 주로 오디오와 비디오 관련 제품들에 대한 정보를 다룬다. Lexico-semantic pattern (LSP) 문법을 관계형 데이터베이스 상에서의 질의 응답 시스템에 최초로 도입하여 기존의 시스템들에 비해 높은 성능을 보이며, linguistic front-end (LFE)와 database back-end (DBE)를 명확히 구분하고 각종 리소스들을 엔진과 분리함으로써 높은 이식성을 가지도록 한다.

  • PDF

A Question Answering Using Syntactic Structure for Answer Extraction (구문구조를 이용하여 정답을 추출하는 질의응답 시스템)

  • Yi, Dae-Yeon;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.89-94
    • /
    • 2003
  • 본 논문에서는 질의문 내에 포함된 동사를 중심으로 한 질의어 확장 및 정답 추출 기법을 이용한 질의 응답 시스템에 대해 기술한다. 질의 응답시스템 전체의 과정에서 동사는 하나의 정보를 표현하는 중요한 요소로 활용하며, 동사에 대한 활용은 구축된 동사구문 사전의 정보를 이용한다. 동사구문 사전은 동사의 일반적인 표층형태와, 각 문장 성분들의 의미속성, 유의동사 등의 정보를 담고 있다. 또한 동사 구문사전의 활용에서의 동사 모호성을 배제하고, 효율을 높이기 위해 약 3만 어휘의 명사 의미 사전을 사용한다. 명사 의미사전은 구문사전 내에 사용된 의미분류로 나누어져 있으며, 유의명사 및 국어사전 상의 뜻 풀이말을 포함하고 있다. 질의문 및 각 후보 문장에 대한 구문분석은 구문사전 내에 나타난 품사 별 의미속성과, 문법 형태소의 격 정보를 이용한 격 구조를 활용하였다. 논문 중에는 일반적인 질의 응답 시스템의 3단계에 맞추어 구문사전 활용 및 구문분석의 수행 단계를 보이고 마지막에 각 기법의 정확도를 보였다.

  • PDF

Knowledge-Based Question Answering System for Aquisition of Concept Word (개념어의 습득을 위한 지식기반 질의응답 시스템)

  • Lee, Jae-Hong;Choe, Ho-Seop;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.95-100
    • /
    • 2003
  • 본 논문에서는 현실 세계가 가지고 있는 지식이 어느 정도 체계적으로 정제되어 있는 국어사전, 백과사전 등을 중심으로, Hybrid Method를 이용한 통계(Statistics)기반 지식베이스와 어휘분류(Lexicon Classification)기반 지식베이스를 효율적으로 구축하여 질의응답시스템에 활용한다. 또한 특정한 문서를 보여주는 일반적인 질의응답시스템과는 달리, 이러한 지식베이스를 이용하여 사용자에게 정확한 개념어(정답어)를 습득하게끔 해주고, 사용자의 인지 체계 속에 어렴풋이 내포되어 있는 개념적 지식을 더욱더 표면적으로 확장해 나갈 수 있는 질의응답시스템을 구축하는 방안을 제시한다.

  • PDF

Study on Knowledge Augmented Prompting for Text to SPARQL (Text to SPARQL을 위한 지식 증강 프롬프팅 연구)

  • Yeonjin Lee;Jeongjae Nam;Wooyoung Kim;Wooju Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.185-189
    • /
    • 2023
  • Text to SPARQL은 지식 그래프 기반 질의응답의 한 형태로 자연어 질문을 지식 그래프 검색 쿼리로 변환하는 태스크이다. SPARQL 쿼리는 지식 그래프의 정보를 기반으로 작성되어야 하기 때문에 기존 언어 모델을 통한 코드 생성방법으로는 잘 동작하지 않는다. 이에 우리는 거대 언어 모델을 활용하여 Text to SPARQL를 해결하기 위해 프롬프트에 지식 그래프의 정보를 증강시켜주는 방법론을 제안한다. 이에 더하여 다국어 정보 활용에 대한 영향을 검증하기 위해 한국어, 영어 각각의 레이블을 교차적으로 실험하였다. 추가로 한국어 Text to SPARQL 실험을 위하여 대표적인 Text to SPARQL 벤치마크 데이터셋 QALD-10을 한국어로 번역하여 공개하였다. 위 데이터를 이용해 지식 증강 프롬프팅의 효과를 실험적으로 입증하였다.

  • PDF

Similar Question Search System for online Q&A for the Korean Language Based on Topic Classification (온라인가나다를 위한 주제 분류 기반 유사 질문 검색 시스템)

  • Mun, Jung-Min;Song, Yeong-Ho;Jin, Ji-Hwan;Lee, Hyun-Seob;Lee, Hyun Ah
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.3
    • /
    • pp.263-278
    • /
    • 2015
  • Online Q&A for the National Institute of the Korean Language provides expert's answers for questions about the Korean language, in which many similar questions are repeatedly posted like other Q&A boards. So, if a system automatically finds questions that are similar to a user's question, it can immediately provide users with recommendable answers to their question and prevent experts from wasting time to answer to similar questions repeatedly. In this paper, we set 5 classes of questions based on its topic which are frequently asked, and propose to classify questions to those classes. Our system searches similar questions by combining topic similarity, vector similarity and sequence similarity. Experiment shows that our method improves search correctness with topic classification. In experiment, Mean Reciprocal Rank(MRR) of our system is 0.756, and precision for the first result is 68.31% and precision for top five results is 87.32%.