• Title/Summary/Keyword: 국부 휨 좌굴 강도

Search Result 33, Processing Time 0.021 seconds

A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling (국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구)

  • Seo, Gun-Ho;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.647-657
    • /
    • 2011
  • This paper describes the moment capacity of flexural members with local buckling based on a series of FE and experiment results. Thin-walled flexural members undergo local, lateral-torsional, or interactive buckling according to the section geometries and lateral boundary conditions. Flexural members with large width-to-thickness ratios in the flanges or the web may undergo local buckling before lateral-torsional buckling. Local buckling has a negative effect on the flexural strength based on the lateral-torsional buckling of flexural members. This phenomenon should be considered in the estimation of the flexural strength of thin-walled sections. Flexural members with various width-to-thickness ratios in their flanges and web were analyzed. Initial imperfections in the local buckling mode, and residual stresses, were included in the FE analyses. Simple bending moment formulae for flexural members were proposed based on the FE and test results to account for local and lateral-torsional buckling. The proposed bending moment formulae for the thin-walled flexural members in the Direct Strength Method use the empirical strength formula and the grosssection modulus. The ultimate flexural strengths predicted by the proposed moment formulae were compared with the AISC (2005), Eurocode3 (2003), and Korean Highway Bridge Design Specifications (2010). The comparison showed that the proposed bending moment formulae can reasonably predict the ultimate moment capacity of thin-walled flexural members.

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Determination of the Allowable Load for Trussed Web Beam (트러스웹을 가진 보의 허용하중 산정)

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • The efficient beam members for modern greenhouse need to be much lightweight with the required flexural and buckling strength. To confirm the applicability and practicality of the trussed web beam recently proposed for column and beam members of greenhouse, the flexural behavior and buckling characteristics were analyzed by the finite element approach. On the basis of analytical studies, the member design process was presented considering the lateral and local buckling behavior. Also, two improved alternatives which were capable of retaining the lateral and local buckling effectively were suggested.

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Flexural Strength of HSB I-Girder Considering Inelastic Flange Local Buckling (압축플랜지 비탄성 국부좌굴을 고려한 HSB 플레이트거더의 휨강도)

  • Cho, Eun Young;Shin, Dong Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The ultimate flexural strength of HSB I-girders, considering the effect of local bucking, was investigated through a series of nonlinear finite element analysis. The girders were selected such that the inelastic local flange buckling or the plastic yielding of compression flanges governs the flexural strength. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web were modeled using thin shell elements and initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was used for steels. After establishing the validity of present FE analysis by comparing FE results with test results published in the literature, the effects of initial imperfection and residual stress on the inelastic flange local buckling behavior were assessed. The ultimate flexural strengths of 60 I-girders with various compression flange slenderness were obtained by FE analysis and compared with those calculated from the KHBDC, AASHTO LRFD and Eurocode 3 provisions. Based on the comparison, the applicability of design equations in these specifications for the flexural strength of I-girder considering flange local buckling was evaluated.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

Buckling Analysis of Inelastic Steel Members (비탄성 강재 부재의 좌굴 해석)

  • Gil, Heung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.29-43
    • /
    • 2000
  • In this study, the computationally efficient inelastic buckling analysis program is developed to be used as the research tool in finding buckling strength of inelastic members. The program can determine buckling loads and buckled shapes of elastic and inelastic members which failed by flexural, lateral-torsional and/or local buckling. It can analyze singly and doubly symmetric I-shape members. In the program, the web of the member is modeled using the plate element and the flanges are modeled by beam elements. Multilinear isotropic hardening rule and the incremental theory of plasticity are used to simulate the inelastic stress-strain relationship from material tests. The program is verified using theoretical solutions and experimental results. The results from the program show good agreement with those from experiments and theory.

  • PDF

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.