• Title/Summary/Keyword: 국부하중

Search Result 355, Processing Time 0.025 seconds

Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio (폭두께비에 따른 강판콘크리트구조의 압축거동)

  • Han, Hong-Soo;Choi, Byong-Jeong;Han, Kweon-Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.

Electrochemical Combined-Stress Degradation Test and Failure Mechanisms of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM 고무의 전기화학적 복합노화시험 및 고장메커니즘)

  • Kwak, Seung Bum;Choi, Nak Sam;Shin, Sei Moon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Coolant rubber hoses for automotive radiators can degrade under thermal and mechanical loadings and thus fail owing to the influences of locally formed electricity. In this study, an advanced test method was developed to simulate the failure of a rubber hose. The aging behavior of carbon-black-filled ethylene-propylene diene monomer (EPDM) rubber used as a radiator hose material under a combination of electrochemical stresses and tensile strain was analyzed. The changing behaviors of the current and the resistance as a function of the aging time were analyzed in consideration of the tensile strain, voltage, and aging temperature. Sectioned specimens clarified the failure mechanisms of the aged skin layer under the combined electrochemical stresses.

Impact Resistance Characteristics of Cementitious Composites Subjected to High-velocity Projectiles with Reinforcement Types (고속 발사체와 충돌한 시멘트복합체의 보강재 종류에 따른 내충격 특성 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2023
  • This research concentrates on the potential explosion hazards that could arise from unforeseen accidents in the rapidly proliferating hydrogen refueling stations and Energy Storage System(ESS) facilities. It underscores the pivotal role of structural protection technology in alleviating such risks. The research contributes primary data for the formulation of structure protection design by assessing the impact resistance across various reinforcement techniques used in cement composites. The experimental results elucidate that reinforced concrete, serving as the quintessential structural material, exhibits a 20% advancement in impact resistance in comparison to its non-reinforced counterpart. In situations typified by rapid loads, such as those seen with high-velocity impacts, the reinforcement of the matrix with fibers is demonstrably more beneficial than local reinforcement. These insights accentuate the importance of judiciously choosing the reinforcement method to augment impact resistance in structural design.

IBS Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames (강재 모멘트 골조의 비선형 지진 해석을 위한 IBS 보 요소)

  • Kim, Dal Sung;Kim, Dong Seong;Kim, Kee Dong;Ko, Man Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.233-242
    • /
    • 2008
  • This study presents a non-prismatic beam element for modeling the elastic and inelastic behavior of steel beams, which have the post-Northridge(cover plate) connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatric members with increased beam section (IBS) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Moreover the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for IBS beam element were described. Analytical results of the IBS beam element show good correlation with test data and FEM results.

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip (부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발)

  • Kim, Do-Yeon;Choi, In-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.517-528
    • /
    • 2008
  • This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

Stress Measurement of Structural Member Using Piezoelectric Property (압전 특성을 이용한 구조물 부재의 응력측정)

  • Im, Eun Sang;Kim, Tea Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.103-108
    • /
    • 2007
  • A stress measurement method of structural member using piezoelectric property and electrostatic voltmeter is presented. The electric potentials of the surface of the piezoelectric element, which are proportional to the strain ${\varepsilon}$ on the structural member, are measured by an electrostatic voltmeter during load cycling. The stress ${\sigma}$ is calculated by this strain ${\varepsilon}$. Moreover, a stress distribution measurement tape which can be used for the stress distribution measurement along a specified line on the surface of structural member is developed, and the surface potential was measured by an electric static voltmeter of non-contact type. The applicability of the stress distribution measurement tape is examined through experiments using a notched specimen under cyclic loading. The measured distributions of x, y and xy are compared with those calculated by FEM analysis.

The effect of tunnel ovality on the dynamic behavior of segment lining (Ovality가 세그먼트 라이닝의 동적 거동 특성에 미치는 영향)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.423-446
    • /
    • 2023
  • Shield TBM tunnel linings are segmented into segments and rings. This study investigates the response characteristics of the stress and displacement of the segment lining under seismic waves through modeling that considers the interface behavior between segments by applying a shell interface element to the contact surface between segments and rings. And there is no management criteria for ovaling deformation of segment linings in Korea. So, this study the ovality criteria and meaning of segment lining. The results of study showed that the distribution patterns of stress and displacement under seismic waves were similar between continuous linings and segment linings. However, the maximum values of stress and displacement showed differences from segment linings. The stress distribution of the continuous lining modeled as a shell type has a stress distribution that has continuity in the 3D cylindrical shape, but the segment lining is concentrated outside the segment, and the largest stress occurs at the location where the contact surface between the segment and the ring is concentrated. This intermittent and localized stress distribution shows an increasing as the ovality of the lining increases at seismic waves. The ovality at which the increase in stress distribution begins to show irregularity and localization is about 150‰. Ovality of 150‰ is an unrealistic value that cannot represent actual lining deformation. Therefore, the ovality of the segment lining increase with depth, but it does not have a significant impact on the stability caused by seismic load.

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial (비파괴적 연속압입시험: 대형구조물로부터 nano소재까지의 응용연구)

  • Jeon, Eun-Chae;Kwon, Dong-Il;Choi, Yeol;Jang, Jae-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.333-346
    • /
    • 2002
  • The continuous indentation techniques are one of the most effective methods to nondestructively estimate mechanical properties. There are many applications in various dimensions of materials from macro-scale, through micro-scale, even to nano-scale range. The macro-range technology of kgf-load level is now focused on the evaluation of tensile properties and residual stress of bulk materials, for example, used in conventional load-bearing structures and in-use pipelines. The technology and the apparatus were successfully developed by a domestic research group. The micro-range technology of gf-load level can be applied to investigate some property-gradient materials such as weldment. Because it has better spatial resolution than the macro-range technology. The nano-range technology (called nanoindentation technique) of mgf-load level is basically used to evaluate hardness and modulus of micro- and nano-materials. Moreover, many researches are going on to measure tensile properties and residual stress. The nanoindentation technology is easy to be applied to the various fields, such as semiconductor devices, multiphase materials, and biomaterials, though other methods are too difficult to be applied due to dimensional or environmental limitations. On the basis of these accomplishments, the international and the domestic standards are being established.