• 제목/요약/키워드: 국방 AI

검색결과 87건 처리시간 0.022초

한국어 립리딩: 데이터 구축 및 문장수준 립리딩 (Korean Lip-Reading: Data Construction and Sentence-Level Lip-Reading)

  • 조선영;윤수성
    • 한국군사과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.167-176
    • /
    • 2024
  • Lip-reading is the task of inferring the speaker's utterance from silent video based on learning of lip movements. It is very challenging due to the inherent ambiguities present in the lip movement such as different characters that produce the same lip appearances. Recent advances in deep learning models such as Transformer and Temporal Convolutional Network have led to improve the performance of lip-reading. However, most previous works deal with English lip-reading which has limitations in directly applying to Korean lip-reading, and moreover, there is no a large scale Korean lip-reading dataset. In this paper, we introduce the first large-scale Korean lip-reading dataset with more than 120 k utterances collected from TV broadcasts containing news, documentary and drama. We also present a preprocessing method which uniformly extracts a facial region of interest and propose a transformer-based model based on grapheme unit for sentence-level Korean lip-reading. We demonstrate that our dataset and model are appropriate for Korean lip-reading through statistics of the dataset and experimental results.

깊은강화학습 기반 1-vs-1 공중전 모델링 및 시뮬레이션 (Modeling and Simulation on One-vs-One Air Combat with Deep Reinforcement Learning)

  • 문일철;정민재;김동준
    • 한국시뮬레이션학회논문지
    • /
    • 제29권1호
    • /
    • pp.39-46
    • /
    • 2020
  • 인공지능(AI)를 교전상황에 활용하는 것은 최근 10년간 국방 분야의 주요 관심사였다. 이러한 응용을 위해서, AI 교전에이전트를 훈련해야 하며, 이를 위해 현실적인 시뮬레이션이 반드시 필요하다. 하드웨어 차원의 현실성을 가진 공중 무기체계 공중전 모델에서 AI 에이전트를 학습한 사례에 대해서 본 논문은 서술하고 있다. 특히, 본 논문은 기총만을 활용하는 공중전 상황에서 적을 어떻게 추적해야하는지 AI를 학습하였다. 본 논문은 현실적인 공중전 시뮬레이터를 작성하여, 에이전트의 행동을 강화학습으로 수행한 결과를 제시한다. 훈련 결과로는 Lead 추적을 활용하여 단축된 교전시간과 높은 보상을 갖는 에이전트의 학습에 성공하였다.

국방분야 인공지능과 블록체인 융합방안 연구 (The study of Defense Artificial Intelligence and Block-chain Convergence)

  • 김세용;권혁진;최민우
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.81-90
    • /
    • 2020
  • 본 연구는 인공지능의 국방 분야 활용 시 데이터 위·변조 방지를 위한 블록체인 기술의 적용방안을 연구 하는데 목적이 있다. 인공지능은 빅 데이터를 다양한 기계학습 방법론을 적용하여 군집화하거나 분류하여 예측하는 기술이며 미국을 비롯한 군사 강대국은 기술의 완성단계에 이르렀다. 만약 데이터를 기반으로 하는 인공지능의 데이터 위·변조가 발생한다면 데이터의 처리과정이 완벽하더라도 잘못된 결과를 도출할 것이며 이는 가장 큰 적의 위험요소가 될 수 있고 데이터의 위·변조는 해킹이라는 형태로 너무나 쉽게 가능하다. 만약 무기화된 인공지능이 사용하는 데이터가 북한으로부터 해킹되어 조작되어 진다면 예상치 못한 곳의 공격이 발생할 수도 있다. 따라서 인공지능의 사용을 위해서는 데이터의 위·변조를 방지하는 기술이 반드시 필요하다. 데이터의 위·변조 방지는 해수함수로 암호화된 데이터를 연결된 컴퓨터에 분산 저장하여 한 대의 컴퓨터가 해킹되더라도 연결된 컴퓨터의 과반 이상이 동의하지 않는 한 데이터가 손상되지 않는 기술인 블록체인을 적용함으로써 문제를 해결할 수 있을 것으로 기대한다.

해안 경계 지능화를 위한 AI학습 모델 구축 방안 (A Methodology of AI Learning Model Construction for Intelligent Coastal Surveillance)

  • 한창희;김종환;차진호;이종관;정윤영;박진선;김영택;김영찬;하지승;이강욱;김윤성;방성완
    • 인터넷정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.77-86
    • /
    • 2022
  • 본 연구의 궁극적인 목표인 지능형 해안 경계 체계 구축을 위해, 본 논문에서는 먼저 해안경계 지능화를 위한 AI 학습 모델의 구축 방안을 제시하였다. 우리는 3면이 바다로 이루어져있고 남과 북이 대치하는 상황으로 인해 해안 경계가 중요한 국가적 과업인 나라이다. 국방개혁 2.0에 의해 해안경계를 담당하고 있는 R/D (Radar) 운용인력이 감소하고 복무 기간이 단축되고 있다. 특히, 레이더와 같이 고도의 장비를 다루는 데에는 휴먼 에러가 발생할 개연성은 늘 상존하는 것이다. 해안 경계와 인공지능의 접목은 정부의 인공지능 국가전략의 구현과 확대라는 목표에도 필요 충분한 시점에 와 있다. 지능형 해안 경계 체계 구축을 위한 AI학습 모델 개발의 기능별 방안을 제시하였다. R/D신호 분석 AI모델 개발, 책임해역 분석 AI모델 개발, 표적 관리 자동화 기능으로 구분하였다. 이를 실현하기 위한 3단계 추진 전략을 살펴보았다. 1단계는 AI 학습모델 구축의 통상적인 단계로써, 데이터 수집, 데이터 저장, 데이터 여과, 데이터 정제, 데이터 변환 등이 이루어진다. 2단계에서는 R/D 특성에 기초해 신호분석을 실시하고, 실상과 허상을 분류하는 AI 학습모델 개발을 진행하고, 책임해역을 분석하고, 취약지역/시간 분석을 실시한다. 최종 단계에서는 AI 학습모델의 검증, 가시화 및 시연 등이 이루어진다. 군 무기체계에 AI 기술이 접목돼 지능화된 무기체계로 바뀌는 최초의 성과가 달성된다.

무기체계 CBM+ 적용 및 확대를 위한 무기체계 센서데이터 수집용 메타데이터 스키마 연구 (A Study on the Metadata Schema for the Collection of Sensor Data in Weapon Systems)

  • 김진영;심형섭;손지성;황윤영
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.161-169
    • /
    • 2023
  • 4차산업혁명으로 인해 인공지능(AI), 빅데이터(Big Data), 클라우드(Cloud) 등 다양한 기술들의 혁신이 가속화되고 있고 데이터가 중요한 자산으로 여겨지고 있다. 이러한 기술의 발전에 따라 국방과학기술분야에서도 기술 혁신을 창출하기 위한 다양한 노력들이 진행되고 있다. 국내에서도 정부는 2023년 3월에 첨단과학기술 강군 육성을 위한 5대 중점과 16개 과제로 구성된 「국방혁신 4.0 기본계획」을 발표했다. 이 계획에는 인사·군수 분야에서도 빅데이터를 구축하는 내용에 무기체계 운용성·가용성 향상과 국방비 절감을 위한 상태기반정비체계(CBM+) 구축에 관한 내용이 포함되어 있다. 상태기반정비(Condition Based Maintenance, CBM)는 무기체계의 신뢰도 확보와 가용성 증대를 목표로 하며 장비의 상태정보 변화를 분석하여 고장과 결함의 징후로 식별하여 정비를 수행하는 개념이고, CBM+는 기존 CBM의 개념에 잔존유효수명(Remaining Useful Life) 예측 기술이 더해진 개념이다[1]. 무기체계 상태기반정비체계 구축을 위해서는 무기체계의 상태정보 획득을 위해 센서를 설치하고 수집된 센서데이터가 필요하다. 본 논문에서는 다양한 무기체계에 설치된 센서에서 수집된 센서데이터를 효율적이고 효과적으로 관리하기 위한 센서데이터 메타데이터 스키마를 제안한다.

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.47-55
    • /
    • 2023
  • 본 논문에서는 전투체계 위협지수를 머신러닝 모델 중 Gradient Boosting Regreesor, Suppor Vector Regressor를 통해 예측하는 방법을 제시한다. 현재 전투체계는 안전성과 신뢰성이 중시되는 소프트웨어이므로 신뢰성이 보장되지 않은 AI 기술의 적용을 정책상 제한하고 있으며, 이로 인하여 전력화된 국내 전투체계는 AI 기술을 탑재하고 있지 않다. 하지만 AI의 전력화를 목표로 하는 국방부의 정책 방향에 대응하기 위하여, 전투체계의 머신러닝 적용에 필요한 기반 기술을 확보하기 위한 연구를 실시하였다. 이 연구는 위협지수 평가에 필요한 데이터를 수집한 뒤 데이터 가공 및 정제, 머신러닝 모델 선정 및 최적의 하이퍼 파리미터를 선정하여 학습된 모델의 예측 정확도를 판단하였다. 그 결과 테스트 데이터에 대한 모델 점수가 99점 이상으로 도출되었으며 전투체계에 머신러닝 모델의 적용 가능성을 확인하였다.

2단계 부분 어텐션 네트워크를 이용한 가려짐에 강인한 군용 차량 검출 (Occlusion Robust Military Vehicle Detection using Two-Stage Part Attention Networks)

  • 조선영
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.381-389
    • /
    • 2022
  • Detecting partially occluded objects is difficult due to the appearances and shapes of occluders are highly variable. These variabilities lead to challenges of localizing accurate bounding box or classifying objects with visible object parts. To address these problems, we propose a two-stage part-based attention approach for robust object detection under partial occlusion. First, our part attention network(PAN) captures the important object parts and then it is used to generate weighted object features. Based on the weighted features, the re-weighted object features are produced by our reinforced PAN(RPAN). Experiments are performed on our collected military vehicle dataset and synthetic occlusion dataset. Our method outperforms the baselines and demonstrates the robustness of detecting objects under partial occlusion.

해군의 향후 군사용 드론 활용 가능방안 연구 (Study on Possible Use of Navy's Future Military Drone)

  • 김진광;이상훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.83-86
    • /
    • 2020
  • 본 논문에서는 해군의 향후 군사용 드론 활용 가능방안을 제안한다. AI, 자율주행 등의 4차 산업혁명 기술들과 함께 상용분야에서는 이미 다양한 드론 활용방안들이 제시되고 있으며, 육군은 이에 발맞춰 2018년 10월 드론봇 전투단을 창설하여 운용 중에 있다. 하지만 아직 해군의 군사용 드론 운용 및 활용방안 등에 관한 연구는 미진하며, 따라서 현재 해군의 군용 드론 활용현황을 살펴보고 객체인식, 자율주행 등의 최신기술과 상용활용 사례 등을 군에 접목시켜 앞으로의 활용 가능방안에 대해서 제안하고자 한다.

  • PDF

전이학습을 활용한 군집제어용 강화학습의 효율 향상 방안에 관한 연구 (Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning)

  • 이슬기;김권일;윤석민
    • 한국군사과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.361-370
    • /
    • 2023
  • Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL's scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.

LLM 시스템의 정보 누출 위험 탐색 (A Study on LLM system vulnerability)

  • 박정환;김건희;이상근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.786-787
    • /
    • 2024
  • Large Language Model은 그 기능으로 말미암아 여러 애플리케이션에 통합되고 있다. 특히 OpenAI는 ChatGPT에 여러 세부 사항을 설정함으로써 차별화된 기능을 사용자가 제공할 수 있도록 한다. 하지만 최근 제시되는 프롬프트 연출 공격은 서비스의 핵심 요소를 쉽게 탈취할 수 있는 가능성을 제시한다. 본 연구는 지침 우회 방법론을 통해 기본 대비 공격의 성공률을 10%p 올렸다. 또한 유출공격을 평가할 수 있는 유효성과 성공률을 통해 모델의 방어 성능을 일반화한다.