• Title/Summary/Keyword: 국방 AI

Search Result 87, Processing Time 0.017 seconds

A study on the current status of defense AI in major foreign countries (해외 주요국의 국방AI 현황 연구)

  • Lee Ji-Eun;Jisun Lee;Ryu chong soo
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • The future battlefield is expected to be very different from what it is today because of the development of new technologies. In particular, it becomes difficult to predict the war's outcome as AI and robots, whose performance is improved, participate in the battlefield. Accordingly, major countries including the US and China regard AI as the key technology and game changer that changing national competitiveness and future wars. Therefore, they are concentrating their efforts at the national level to occupy advance related technologies and to develop AI weapon systems. For this reason, countries are preparing strategies and policies to defense AI, and are actively expanding infrastructure, such as establishing organizations. In Korea, Defense AI is also being promoted. But, it suffers from a lack of governance that manages and controls integrally. Nevertheless, a significant consensus is forming on the necessity of establishing a defense AI center. In this study, we analyzed the status of defense AI promotion in major foreign countries such as the US, UK, and Australia, and suggested some implications for the establishment of defense AI policies.

  • PDF

A Methodology for SDLC of AI-based Defense Information System (AI 기반 국방정보시스템 개발 생명주기 단계별 보안 활동 수행 방안)

  • Gyu-do Park;Young-ran Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.577-589
    • /
    • 2023
  • Ministry of National Defense plans to harness AI as a key technology to bolster overall defense capability for cultivation of an advanced strong military based on science and technology based on Defense Innovation 4.0 Plan. However, security threats due to the characteristics of AI can be a real threat to AI-based defense information system. In order to solve them, systematic security activities must be carried out from the development stage. This paper proposes security activities and considerations that must be carried out at each stage of AI-based defense information system. Through this, It is expected to contribute to preventing security threats caused by the application of AI technology to the defense field and securing the safety and reliability of defense information system.

Battle Simulator for Multi-Robot Mission Simulation and Reinforcement Learning (다중로봇 임무모의 및 강화학습을 위한 전투급 시뮬레이터 연구)

  • Jungho Bae;Youngil Lee;Dohyun Kim;Heesoo Kim;Myoungyoung Kim;Myungjun Kim;Heeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.619-627
    • /
    • 2024
  • As AI technology advances, interest in performing multi-robot autonomous missions for manned-unmanned teaming (MUM-T) is increasing. In order to develop autonomous mission performance technology for multiple robots, simulation technology that reflects the characteristics of real robots and can flexibly apply various missions is needed. Additionally, in order to solve complex non-linear tasks, an API must be provided to apply multi-robot reinforcement learning technology, which is currently under active research. In this study, we propose the campaign model to flexibly simulate the missions of multiple robots. We then discuss the results of developing a simulation environment that can be edited and run and provides a reinforcement learning API including acceleration performance. The proposed simulated control module and simulated environment were verified using an enemy infiltration scenario, and parallel processing performance for efficient reinforcement learning was confirmed through experiments.

Test and Evaluation Procedures of Defense AI System linked to the ROK Defense Acquisition System (국방획득체계와 연계한 국방 인공지능(AI) 체계 시험평가 방안)

  • Yong-Bok Lee;Min-Woo Choi;Min-ho Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.229-237
    • /
    • 2023
  • In this research, a new Test and Evaluation (T&E) procedure for defense AI systems is proposed to fill the existing gap in established methodologies. This proposed concept incorporates a data-based performance evaluation, allowing for independent assessment of AI model efficacy. It then follows with an on-site T&E using the actual AI system. The performance evaluation approach adopts the project promotion framework from the defense acquisition system, outlining 10 steps for R&D projects and 9 steps for procurement projects. This procedure was crafted after examining AI system testing standards and guidelines from both domestic and international civilian sectors. The validity of each step in the procedure was confirmed using real-world data. This study's findings aim to offer insightful guidance in defense T&E, particularly in developing robust T&E procedures for defense AI systems.

AI and Network Trends for Manned-Unmanned Teaming (유‧무인 복합을 위한 AI와 네트워크 동향)

  • J.K. Choi;Y.T. Lee;D.W. Kang;J.K. Lee;H.S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.21-31
    • /
    • 2024
  • Major global powers are investing heavily in artificial intelligence (AI) and hyper-connected networks, demonstrating their crucial role in future warfare. To advance and utilize AI in national defense, it is essential to have policy support at the governmental or national level. This includes establishing a research and development infrastructure, creating a common development environment, and fostering AI expertise through education and training programs. To achieve advancements in hyper-connected networks, it is essential to establish a foundation for a robust and resilient infrastructure by comprehensively building integrated satellite, aerial, and ground networks, along with developing 5G & edge computing and low-orbit satellite communication technologies. This multi-faceted approach will ensure the successful integration of AI and hyper-connected networks, strengthening national defense and positioning nations at the forefront of technological advancements in warfare.

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

Efficient Task-Resource Matchmaking Technique for Multiple/Heterogeneous Unmanned Combat Systems (다중/이종 무인전투체계를 위한 효율적 과업-자원 할당 기법)

  • Young-il Lee;Hee-young Kim;Wonik Park;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • In the future battlefield centered on the concept of mosaic warfare, the need for an unmanned combat system will increase to value human life. It is necessary for Multiple/Heterogeneous Unmanned Combat Systems to have suitable mission planning method in order to perform various mission. In this paper, we propose the MTSR model for mission planning of the unmanned combat system, and introduce a method of identifying a task by a combination of services using a request operator and a method of allocating resources to perform a task using the requested service. In order to verify the performance of the proposed task-resource matchmaking algorithm, simulation using occupation scenarios is performed and the results are analyzed.

Application Strategies of Superintelligent AI in the Defense Sector: Emphasizing the Exploration of New Domains and Centralizing Combat Scenario Modeling (초거대 인공지능의 국방 분야 적용방안: 새로운 영역 발굴 및 전투시나리오 모델링을 중심으로)

  • PARK GUNWOO
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • The future military combat environment is rapidly expanding the role and importance of artificial intelligence (AI) in defense, aligning with the current trends of declining military populations and evolving dynamics. Particularly, in the civilian sector, AI development has surged into new domains based on foundation models, such as OpenAI's Chat-GPT, categorized as Super-Giant AI or Hyperscale AI. The U.S. Department of Defense has organized Task Force Lima under the Chief Digital and AI Office (CDAO) to conduct research on the application of Large Language Models (LLM) and generative AI. Advanced military nations like China and Israel are also actively researching the integration of Super-Giant AI into their military capabilities. Consequently, there is a growing need for research within our military regarding the potential applications and fields of application for Super-Giant AI in weapon systems. In this paper, we compare the characteristics and pros and cons of specialized AI and Super-Giant AI (Foundation Models) and explore new application areas for Super-Giant AI in weapon systems. Anticipating future application areas and potential challenges, this research aims to provide insights into effectively integrating Super-Giant Artificial Intelligence into defense operations. It is expected to contribute to the development of military capabilities, policy formulation, and international security strategies in the era of advanced artificial intelligence.

A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation (위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.