국방 각급 부대는 망연계 자료교환 시스템에 의해 인터넷과 국방망을 연계하여 데이터를 수집하고 있다. 또한, 안전한 국방 데이터수집과 빅데이터 환경조성을 위해 악성코드를 내재한 데이터들을 차단 및 분류하는 데이터 검열을 수행한다. 그러나 수집되는 데이터들이 새로운 악성코드를 내재할 경우, 현재 운용되고 있는 국방 시스템으로 식별하는 것이 불가능하여 외부로부터의 보안위협이 존재한다. 따라서 본 논문에서는 새로운 악성코드 위협에도 대응할 수 있는 Learned MAPE-K 기반 자료교환 시스템을 제안한다.
With the advent of the fourth industrial revolution characterized by hyperconnectivity and superintelligence and the emerging cyber physical systems, enormous volumes of data are being generated in the cyberspace every day ranging from the records about human life and activities to the communication records of computers, information and communication devices, and the Internet of things. Big data represented by 3Vs (volume, velocity, and variety) are actively used in the defence field as well. This paper proposes a big data governance model to support effective military operations in the cyberspace. Cyberspace operation missions and big data types that can be collected in the cyberspace are classified and integrated with big data governance issues to build a big data governance framework model. Then the effectiveness of the constructed model is verified through examples. The result of this study will be able to assist big data utilization planning in the defence sector.
Shin, Philip Wootaek;Lee, Jinhee;Kim, Jeongwoo;Shin, Dongsun;Lee, Youngsang;Hwang, Seung Ho
Journal of Internet Computing and Services
/
v.21
no.1
/
pp.169-178
/
2020
The reductions of troops/human resources, and improvement in combat power have made Korean Department of Defense actively adapt 4th Industrial Revolution technology (Artificial Intelligence, Big Data). The defense information system has been developed in various ways according to the task and the uniqueness of each military. In order to take full advantage of the 4th Industrial Revolution technology, it is necessary to improve the closed defense datamanagement system.However, the establishment and usage of data standards in all information systems for the utilization of defense big data and artificial intelligence has limitations due to security issues, business characteristics of each military, anddifficulty in standardizing large-scale systems. Based on the interworking requirements of each system, data sharing is limited through direct linkage through interoperability agreement between systems. In order to implement smart defense using the 4th Industrial Revolution technology, it is urgent to prepare a system that can share defense data and make good use of it. To technically support the defense, it is critical to develop Multi Repository Meta-Data Management (MRMM) that supports systematic standard management of defense data that manages enterprise standard and standard mapping for each system and promotes data interoperability through linkage between standards which obeys the Defense Interoperability Management Development Guidelines. We introduced MRMM, and implemented by using vocabulary similarity using machine learning and statistical approach. Based on MRMM, We expect to simplify the standardization integration of all military databases using artificial intelligence and bigdata. This will lead to huge reduction of defense budget while increasing combat power for implementing smart defense.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.6
/
pp.315-325
/
2016
Due to the expansion of data and technical progress in the military industry, it is important to extract meaningful information for assuring quality and making policies. The analysis of trends and decision making based on big data is helpful for increasing productivity in business and finding new business opportunities. We propose an application to collect reliable quality information for munitions and build a big data platform for using the accumulated information and numerical data. We verified the proposed platform using the Test Report Information Service (TRIS) system and suggest a method that utilizes unstructured and semi-structured data accumulated by TRIS. Thus, we expect that the proposed platform will help in building infrastructure for military data, making efficient strategies, and analyzing trends for assuring munitions quality.
Due to the Fourth Industrial Revolution, innovation in various technologies such as artificial intelligence (AI), big data (Big Data), and cloud (Cloud) is accelerating, and data is considered an important asset. With the innovation of these technologies, various efforts are being made to lead technological innovation in the field of defense science and technology. In Korea, the government also announced the "Defense Innovation 4.0 Plan," which consists of five key points and 16 tasks to foster advanced science and technology forces in March 2023. The plan also includes the establishment of a Condition-Based Maintenance system (CBM+) to improve the operability and availability of weapons systems and reduce defense costs. Condition Based Maintenance (CBM) aims to secure the reliability and availability of the weapon system and analyze changes in equipment's state information to identify them as signs of failure and defects, and CBM+ is a concept that adds Remaining Useful Life prediction technology to the existing CBM concept [1]. In order to establish a CBM+ system for the weapon system, sensors are installed and sensor data are required to obtain condition information of the weapon system. In this paper, we propose a sensor data metadata schema to efficiently and effectively manage sensor data collected from sensors installed in various weapons systems.
Since the emergence of the fourth industrial revolution, data analysis is being conducted in various fields. Distributed data processing has already become essential for the fast processing of large amounts of data. However, in the defense sector, simulation used cannot fully utilize the unstructured data which are prevailing at real environments. In this study, we propose a distributed data processing platform that can be applied to battalion level simulation models to provide visualized data for command decisions during training. 500,000 data points of strategic game were analyzed. Considering the winning factors in the data, variance processing was conducted to analyze the data for the top 10% teams. With the increase in the number of nodes, the model becomes scalable.
Proceedings of the Korea Contents Association Conference
/
2012.05a
/
pp.169.1-169.1
/
2012
최근 높은 관심과 기술적 이슈를 끌어내고 있는 빅 데이터는 과학기술 분야에도 무수히 존재한다. 위성사진, 동영상을 비롯하여 링크드 데이터 (Linked Data)에 이르기까지 데이터 유형과 무관하게 처리해야 할 대상은 계속 늘어가고 있는 실정이다. 최근 몇 년동안 과학기술 문헌을 대상으로 시맨틱 기술과 자연어처리 기술을 이용하여 기술 동향을 분석하고 예측하는 연구를 수행해 온 KISTI는 빅 데이터 환경에 맞추어 분석 플랫폼을 분산/병렬화하는 동시에 모바일 서비스 플랫폼을 통해 신속한 의사 결정을 지원하는 전략을 취하고 있다. 또한, 법무부, 국방기술품질원, 관세청에 적용한 분석 기술을 더욱 고도화하여 사용자 적응형 가이드 서비스를 개발하고 이를 통해 연구 개발 전략 수립을 실제적으로 지원할 수 있도록 노력하고 있다.
Recently, Big Data is a buzzword in the creative economy generation. The organizations related to spatial information society focus on building the spatial big data systems. As spatial big data is a combination of spatial information and big data, the data visualization is essential in order to utilize them efficiently. One of the great methodologies for data visualization is infographics. Nationally, Chousn.com initiated the infographics news in 2010. Korean Administration Branches also recognized the importance of infographic and they adopted infographics for their briefings from 2013. Internationally, Visual.ly is leading company in the infographics market and they produced noticeable interactive infographics for Egypt Parliamentary Elections results. In the defense part, Guardian's datajournalism of Afghanistan war log was a good example of utilizing infographics. Throughout the research, five requirements are extracted. First source data should have precision and accuracy in terms of time and space manner. Second, infographics images have a compressibility. Third, the infographics is properly processed for military commanders. Fourth, sharing, openness and communication are essential for high quality infographic. Lastly, infographics should be an analytic tool for predicting future event based on the past data. Infographics is not a direct representation of data but an analytic tool for helping user's choice and decision in critical moments.
본 연구는 국방과학기술 분야의 특허 및 논문 실적을 이용하여 통계기반 기계학습 모델 4 종을 학습하고, 실제 분석 대상기관의 데이터 입력결과를 분석하여 실용성에 대한 한계점 분석을 목적으로 한다. 기존 연구에서는 특허분류코드를 기준으로 분류하여 특수 목적으로 활용하거나 세부 연구 범위 내 연구 주제탐색 및 특징연구 등 미시적인 관점에서의 상세연구 활용 목적인 반면, 본 연구는 거시적인 관점에서 연구의 전체적인 흐름과 경향성 파악을 목적으로 한다. 이에 ICT 기술 138 종의 특허 및 논문 30,965 건과 국방과학기술 192 종의 특허 및 논문 23,406 건을 학습데이터로 각 모델을 학습하였다. 비교한 통계기반 학습모델은 Support Vector Machines, Decision Tree, Naive Bayes, XGBoost 모델이다. 학습데이터에 대한 학습검증 단계에서는 최대 99.4%의 성능을 보였다. 다만, 실제 분석대상기관의 특허 및 논문 12,824 건으로 입력분석한 결과, 모델별 편향성 문제, 데이터 전처리 이슈, 다중클래스 및 다중레이블 문제를 확인, 도출한 문제에 대한 해결방안을 제시하고 추가 연구의 방향성을 제시한다.
AI is accepted not only in the private sector but also in the defense sector as a cutting-edge technology that must be introduced for the development of national defense. In particular, artificial intelligence has been selected as a key task in defense science and technology innovation, and the importance of data is increasing. As the national defense department shifts from a closed data policy to data sharing and activation, efforts are being made to secure high-quality data necessary for the development of national defense. In particular, we are promoting a review of the business budget system to secure data so that related procedures can be improved to reflect the unique characteristics of AI and big data, and research and development can begin with sufficient large quantities and high-quality data. However, there is a need to establish standardization and quality standards for structured data and unstructured data at the national defense level, but the defense department is still proposing standardization and quality standards for structured data, so this needs to be supplemented. In this paper, we propose an unstructured data set standard format for defense unstructured data sets, which are most needed in defense artificial intelligence, and based on this, we propose a standardization method for defense unstructured data sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.