• Title/Summary/Keyword: 국립국어원

검색결과 32건 처리시간 0.148초

한국어 회의록 생성 요약을 위한 국회 회의록 요약 말뭉치 구축 연구 (Corpus Construction of National Assembly Minutes Summarization for Korean Abstractive Meeting Minutes Summarization)

  • 함영균;강예지;박서윤;정용빈;서현빈;이이슬;서혜진;서샛별;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.192-197
    • /
    • 2022
  • 요약 연구의 주류는 아직 문서를 대상으로 하지만, 최근에는 회의 요약 연구에 대한 관심이 크게 높아지고 있다. 본 연구는 국립국어원 국어 빅데이터 구축 사업의 일환으로 국내에서 아직 연구되지 않은 국회 회의록 생성 요약에 대해 연구를 진행하였으며, 국회 회의록에 대한 생성 요약 데이터세트를 구축하였다. 또한 생성 요약 모델을 통해 구축된 데이터세트에 대한 정량 및 정성적 평가를 진행함으로써 국회 회의록 요약 데이터세트에 대한 평가 및 향후 생성 요약과 회의록 요약의 연구 방향을 모색하였다.

  • PDF

주제 분류를 활용한 국립국어원 질의응답 게시판 유사 질문 검색 시스템 (Similar Question Search System for Q&A board of The National Institute of the Korean Language using Topic Classification)

  • 문정민;송영호;진지환;이현섭;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-205
    • /
    • 2014
  • 국립국어원의 온라인 가나다 서비스는 한국어에 대한 다양한 질문과 정확한 답변을 제공한다. 만일 새롭게 등록되는 질문에 대해 유사한 질문을 자동으로 찾을 수 있다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 국립국어원 질의응답게시판의 특성을 분석하여 질문의 주제를 6가지로 분류하고, 주제 분류 정보와 벡터 유사도, 수열 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용한 결과 1위 정답 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 MRR이 0.62, 정답이 1위, 5위내에 검색될 확률은 각각 54.2%, 78.2%를 보였다.

  • PDF

KorBERT와 Popularity 정보에 기반한 한국어 개체연결 (Korean Entity Linking based on KorBERT and Popularity )

  • 허정;배경만;임수종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.502-506
    • /
    • 2022
  • 본 논문에서는 KorBERT와 개체 인기정보(popularity)를 이용한 개체연결 기술을 소개한다. 멘션인식(mention detection)은 KorBERT를 이용한 토큰분류 문제로 학습하여 모델을 구성하였고, 개체 모호성해소(entity disambiguation)는 멘션 컨텍스트와 개체후보 컨텍스트 간의 의미적 연관성에 대한 KorBERT기반 이진분류 문제로 학습하여 모델을 구성하였다. 개체 인기정보는 위키피디아의 hyperlink, inlink, length 정보를 활용하였다. 멘션인식은 ETRI 개체명 인식기를 이용한 모델과 비교하였을 경우, ETRI 평가데이터에서는 F1 0.0312, 국립국어원 평가데이터에서는 F1 0.1106의 성능 개선이 있었다. 개체 모호성해소는 KorBERT 모델과 Popularity 모델을 혼용한 모델(hybrid)에서 가장 우수한 성능을 보였다. ETRI 평가데이터에서는 Hybrid 모델에서의 개체 모호성 해소의 성능이 Acc. 0.8911 이고, 국립국어원 평가데이터에서는 Acc. 0.793 이였다. 최종적으로 멘션인식 모델과 개체 모호성해소 모델을 통합한 개체연결 성능은 ETRI 평가데이터에서는 F1 0.7617 이고, 국립국어원 평가데이터에서는 F1 0.6784 였다.

  • PDF

국어정보 질의응답을 위한 키워드 추출 (Keyword Extraction for Korean Language Q&A)

  • 전석종;이수인;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.213-215
    • /
    • 2015
  • 국립국어원 온라인가나다에서 제공되는 질의응답 문서를 이용한 국어정보에 대한 Q&A시스템은 언어 자체에 대한 질문과 답변의 특성으로 조사나 어미로 끝나는 표현이 주어로 등장하는 등의 특이한 문장이 자주 나타난다. 이러한 이유로 형태소 분석을 거쳐 명사를 키워드로 추출하는 일반적인 키워드 추출 방식은 좋은 성능을 얻기 어렵다. 본 논문에서는 국어정보 질의응답 문서의 특징에 맞는 키워드 추출 방법을 제안한다. 제안하는 방식에서는 문장 단위로 분할된 결과에서 연결어미로 문장을 추가로 분할한 뒤에 조사 앞에 나타나는 단어열을 키워드로 추출한다. 덧붙여 다자비교형 질의에서의 키워드 추출을 위해 편집거리를 이용한 키워드 추출 방법을 제안한다.

  • PDF

질문 특성을 고려한 커뮤니티 질의응답 시스템(cQA) 자질 추출 방법 (Feature Extraction for Community Question Answering System(cQA) considering Question Characteristic)

  • 박용민;김보겸;이재성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.119-121
    • /
    • 2014
  • 커뮤니티 질의응답 시스템(cQA)은 기존에 구축된 '질문-답' 쌍에서 사용자의 질문과 비교하여 유사도 순으로 결과를 보여주는 시스템이다. 본 논문에서는 '국립국어원'의 질의응답 게시판에 적용 가능한 '커뮤니티 질의응답 시스템'을 소개하고, 국립국어원 질의응답 게시판의 질문 특성을 분석하여 cQA의 성능 향상을 위한 자질 추출 방법을 제시한다.

  • PDF

우리말샘 사전을 이용한 단어 의미 유사도 측정 모델 개발 (A Word Semantic Similarity Measure Model using Korean Open Dictionary)

  • 김호용;이민호;서동민
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.3-4
    • /
    • 2018
  • 단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.

  • PDF

온라인가나다를 위한 주제 분류 기반 유사 질문 검색 시스템 (Similar Question Search System for online Q&A for the Korean Language Based on Topic Classification)

  • 문정민;송영호;진지환;이현섭;이현아
    • 인지과학
    • /
    • 제26권3호
    • /
    • pp.263-278
    • /
    • 2015
  • 국립국어원의 온라인가나다 서비스는 한국어에 대한 질문을 등록하면 전문가가 답변을 작성하는 인터넷 서비스이다. 이러한 서비스는 유사한 질문이 자주 등록되는 문제점이 있다, 만일 새롭게 등록되는 질문과 유사한 질문을 자동으로 찾아 그 질문에 대한 답변을 등록 즉시 제공한다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 온라인가나다의 특성을 분석하여 자주 질문되는 다섯 개의 주제 분류를 설정하고, 주제 분류 유사도와 함께 음소와 음절단위 수열유사도와 벡터 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용하여 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 Mean Reciprocal Rank(MRR)가 0.756, 정답이 1위와 5위내에 검색될 확률은 각각 68.31%, 87.32%를 보였다.

데이터로 인해 발생하는 자연어처리 분야의 윤리적 이슈 (Ethical Issues in Natural Language Processing arising from Data)

  • 강혜린;장연지;강예지;박서윤;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.26-31
    • /
    • 2022
  • 자연어처리에서 데이터는 굉장히 많은 부분을 차지하고 중요한 역할이지만, 데이터로 인한 윤리적 이슈 또한 많이 나타난다. 본 연구는 자연어처리에서의 데이터 흐름의 과정에서 나타날 수 있는 윤리적 이슈를 단계별로 정리하였다. 이는 복잡한 자연어처리 과정의 특성과 자연어처리 분야에서 나타나는 상황을 모두 고려한 것이다. 또한 단계별로 정리한 이슈를 토대로 자연어처리가 더 나은 방향으로 나아가기 위한 데이터 관점에서의 미래 방향을 제시하였다.

  • PDF

생략복원을 위한 ELECTRA 기반 모델 최적화 연구 (Optimizing ELECTRA-based model for Zero Anaphora Resolution)

  • 박진솔;최맹식;;이충희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.329-334
    • /
    • 2021
  • 한국어에서는 문장 내의 주어나 목적어가 자주 생략된다. 자연어 처리에서 이러한 문장을 그대로 사용하는 것은 정보 부족으로 인한 문제 난이도 상승으로 귀결된다. 생략복원은 텍스트에서 생략된 부분을 이전 문구에서 찾아서 복원해 주는 기술이며, 본 논문은 생략된 주어를 복원하는 방법에 대한 연구이다. 본 논문에서는 기존에 생략복원에 사용되지 않았던 다양한 입력 형태를 시도한다. 또한, 출력 레이어로는 finetuning layer(Linear, Bi-LSTM, MultiHeadAttention)와 생략복원 태스크 형태(BIO tagging, span prediction)의 다양한 조합을 실험한다. 국립국어원 무형 대용어 복원 말뭉치를 기반으로 생략복원이 불필요한 네거티브 샘플을 추가하여 ELECTRA 기반의 딥러닝 생략복원 모델을 학습시키고, 생략복원에 최적화된 조합을 검토한다.

  • PDF