• Title/Summary/Keyword: 구획온도분포

Search Result 10, Processing Time 0.027 seconds

Numerical Study on the Validity of Scaling Law for Compartment Fires (구획 화재의 상사 법칙 유효성에 관한 수치해석 연구)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this study, to assess the validity of scaling law which was based on the ventilation factor and utilized in fields of compartment fires, numerical simulations were conducted on full- and 2/5 reduced-scale compartment fires using FDS and simulation results were compared with the previously published experimental data. The numerical modeling used in this study was verified by comparing the predicted temperature at several points of the upper layer with the experiment data. Temperature and concentration distribution inside of compartments and velocity profile at door of compartment are analyzed to assess the validity of scaling law. Comparison between the predicted results on the full- and reduced-scale compartments shows good agreements on the inner compartment flow patterns, outflowing flame patterns from the compartments, and vertical temperature distributions.

Numerical Analysis of the Temperature Distribution Considering the Wall Thermal Conductivity in Compartment Fire (구획 화재 시 벽면의 열적 특성을 고려한 온도분포 해석결과)

  • You, Woo Jun;Ko, Kwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.644-648
    • /
    • 2019
  • This study examined effects of the wall thermal conductivity coefficients on the thermal fluid phenomenon of a compartment fire. The reduced scale compartment was 0.4 m in width, 0.6 m in length and 0.6 m in height with a fire-board, which has a thermal conductivity coefficient of $0.18W/m{\cdot}K$. The local temperature at a 0.37 m height and the overall heat release rate were measured under the following experiment conditions: a $0.12m^2$ opening area and $0.01m^2$ pool size of a gasoline fire. The numerical results obtained by the Fire Dynamic Simulation were compared with the experimentally measured temperature. The deviations were within 10 % in the period of the steady state for maximum heat release rate (4.8 kW). The numerical results show that the average temperature of the compartment wall decreases by approximately 71 % with increasing thermal conductivity coefficient from $0.1W/m{\cdot}K$ to $100.0W/m{\cdot}K$ on the fixed heat release rate.

Analysis on the Effects of the Heat Loss Coefficient on the Operation Time of Sprinkler in Compartment Fire (구획 화재에서 스프링클러 열 손실계수 변화에 따른 작동 시간 분석)

  • You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.34-39
    • /
    • 2018
  • In this study, the experiment conditions for the variation of heat release rate in compartment space were constructed to analyze the effects of fire spread and the operation time of sprinkler in accordance with the heat loss of the sprinkler's heat element. The compartment composed of fire board (width = 0.3 m, height = 0.5 m, length = 3.0 m), are manufactured to measure the temperature distributions in the inner space, the mass loss rate and heat release rate during the experiment of N-heptane pool fire test. Also, the operation time of sprinkler is analyzed with the installation of sprinkler and C-factor using Fire Dynamics Simulator Ver.6 under the experiment conditions. The results show that the operation time of sprinkler, which has RTI $100(m{\cdot}s)^{0.5}$ operating temperature $70^{\circ}C$, is 30 s~60 s for C-factor = 0 and 1, 62 s~92 s for C-factor = 3, and 120 s over for C-factor = 5, respectively.

Changes in Fire Characteristics according to the Distance Between the Fire Source and Sidewall in a Reduced-Scale Compartment (축소 구획실에서 화원과 측벽의 거리에 따른 화재특성 변화)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Experimental and numerical studies on the fire characteristics according to the distance between the fire source and sidewall under the over-ventilated fire conditions. A 1/3 reduced ISO 9705 room was constructed and spruce wood cribs were used as fuel. Fire Dynamics Simulator (FDS) was used for fire simulations to understand the phenomenon inside the compartment. As a result, the mass loss rate and heat release rate were increased due to the thermal feedback effect of the wall in the compartment fire compared to the open fire. As the distance between the fire source and sidewall was reduced, the major fire characteristics, such as maximum mass loss rate, heat release rate, fire growth rate, temperature, and heat flux, were increased despite the limitations of air entrainment into the flame. In particular, a significant change in these physical quantities was observed for the case of a fire source against the sidewall. In addition, the vertical distribution of temperature was changed considerably due to a change in the flow structure inside the compartment according to the distance between the fire source and sidewall.

Multi-dimensional Fire Behaviors in an Under-ventilated Compartment Fire (환기부족 구획화재에서 다차원 화재거동)

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.37-42
    • /
    • 2010
  • 실제 규모 ISO 9705 표준 화재실에서 과환기(over-ventilated) 및 환기부족(under-ventilated) 화재에 대한 열 및 화학적 특성에 관한 실험이 수행되었다. 또한 FDS(Fire Dynamic Simulator)를 이용하여 수치적 예측성능에 대한 평가와 환기부족화재에서 건물 내부의 다차원 화재현상에 대한 해석이 이루어졌다. 과환기 및 환기부족화재의 특성은 연소효율, 총괄 당량비 뿐만 아니라 고온 상층부의 온도분포, 연소 생성물의 농도에 의해 명확하게 구분되었다. 실험결과와의 비교를 통해 과환기 및 환기부족화재에서 FDS는 공간내부의 온도, 열유속 및 다양한 화학종의 분포를 정량적으로 잘 예측함을 확인하였다. 과환기화재와 비교할 때, 환기부족화재에서 내부유동은 반대방향의 다차원 재순환 유동구조를 갖고 있음을 발견하였다. 동시에 공간내부의 $O_2$ 및 CO의 분포 역시 다차원 구조를 갖기 때문에 기존화재연구에서 측정되는 고온 상층부의 열 및 화학적 특성은 환기부족화재를 이해하는데 많은 한계가 있음을 확인하였다.

  • PDF

Thermal Analysis of Insulation System for KC-1 Membrane LNG Tank (KC-1 Membrane LNG 탱크 단열시스템의 열해석에 관한 연구)

  • Hyeon-won, Jeong;Tae-hyun, Kim;Seog-soon, Kim;W.Jaewoo, Shim
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.91-102
    • /
    • 2017
  • Recently, a new type of LNG membrane Tank called the "KC-1 membrane LNG Tank" was developed by KOGAS (Korean Gas Corporation). It is necessary to estimate the temperature distribution of the hull structure and insulation system for this new LNG tank, as well as the BOR (Boil-Off Rate) when exposed to outside temperature conditions to ensure the integrity of the tank structure and limit LNG evaporation, from a safety evaluation point of view. In this study, temperature distribution calculations for the hull structure and insulation system of the KC1 membrane tank were compared by employing four numerical approaches under the IGC condition. Approaches 1-3 studied 2D simulations and approach 4 used a 3D numerical simulation. Approach 1 was calculated by in-house Excel VBA codes and the three other approaches utilized ANSYS Fluent. The BOR of approach 4, the 3D simulation case, for the IGC condition was 0.0986%/day.

Characteristics of Heat Flux in a Compartment Fire - Reduced Scale Test (구획공간 화재의 열유속 특성 - 축소 실험)

  • Kim, Sung-Chan;Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.128-133
    • /
    • 2011
  • The present study performs a series of 40 % reduced scale of ISO-9705 fire test to investigate the characteristics of heat flux on the floor level in terms of fire characteristics and location in the compartment. The heat flux was measured with Schmidt-Boelter type heat flux gauge at two locations on the floor level of inside and doorway side of the compartment. Different types of fuel - methane, heptane, toluene, ethanol, polystyrene - were burned in this test series. The measured heat flux inside of the compartment was relatively higher than that of front side as the heat release rate of fire and upper layer temperature increased. The difference of measured heat flux at inside and doorway side increased for high sooty fire. The present study shows that the heat flux distribution at lower layer greatly depend on the thermal radiation from fire and upper layer, not only the upper layer temperature but also various fire characteristics such as composition of combustion gases, soot concentration, ventilation condition and so on.

An Experimental Study on the Damage of the Data Process Equipment When $CO_2$ is Discharged ($CO_2$ 소화설비 방사시 정보저장장치의 저온손상에 관한 연구)

  • 이수경;김종훈;김영진;최종운
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.19-26
    • /
    • 1999
  • $CO_2$ extinguishing system is the most $\phi$pular among the gas extinguishing system. $CO_2$ is usually stored with liquified state. But, it gasifies at the tip of nozzle when $CO_2$ was released through the pipe and head. A ro$\alpha$n temperature is very low when $CO_2$ was released. So electrical instrument, magnetic storage equipment and memory semiconductor are electrically or physically injured by cooling effect in a few minutes. So, we intend to find out temperature profile and electrical damage in compartment area, and supply basic d data for research and making standards and code through the full scale experiment. As result of experiment on the damage due to cooling effect from $CO_2$ extinguishing system, i instantaneous discharging temperature. was $-82.5^{\circ}C$ in average. An average temp. in the compartment after discharging $CO_2$ was $-40^{\circ}C$.

  • PDF

A Study of the Suitability of Combustion Chemistry in the EDC Model for the LES of Backdraft (백드래프트 현상의 LES를 위한 EDC 모델의 연소 화학반응기구 적합성 연구)

  • Myilsamy, Dinesh;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • Large Eddy Simulation (LES) was peformed for the backdraft occurred in a compartment filled with high-temperature methane fuel using the Fire Dynamics Simulator (FDS) of version 6. The prediction performance of FDS, adopted the Eddy Dissipation Concept (EDC) combustion model with five different chemical reaction mechanisms, was evaluated. The temporal distributions of temperature, fuel mass fraction, velocity and pressure were discussed with numerical results and the pressure variation in time was compared with that of previous experiment. The FDS adopted the EDC model showed the possibility of LES for the backdraft phenomena. However, the prediction performance of the LES with EDC model strongly depended on the chemical reaction mechanism considered. It is necessary that the suitability of the chemical reaction mechanism should be validated in advance for LES with the FDS v6 to be applied to the simulation of backdraft.

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향(Part I: FDS의 성능평가))

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Experimental and numerical studies were conducted to investigate the thermal and chemical characteristics of heptane fires in a full-scale ISO 9705 room. Representative fire conditions were considered for over-ventilated fire (OVF) and under-ventilated fire (UVF). Fuel flow rate and doorway width were changed to create OVF and UVF conditions. Detailed comparisons of temperature and species concentrations between experimental and numerical data were presented in order to validate the predictive performance of FDS (Fire Dynamic Simulator). The OVF and UVF were explicitly characterized with distributions of temperature and product formation measured in the upper layer, as well as combustion efficiency and global equivalence ratio. It was shown that the numerical results provided a quantitatively realistic prediction of the experimental results observed in the OVF conditions. For the UVF, the numerically predicted temperature showed reasonable agreement with the measured temperature. The predicted steady-state volume fractions of $O_2$, $CO_2$, CO and THC also agreed quantitatively with the experimental data. Although there were some limitations to predict accurately the transient behavior in terms of CO production/consumption in the UVF condition, it was concluded that the current FDS was very useful tool to predict the fire characteristics inside the compartment for the OVF and UVF.