• Title/Summary/Keyword: 구조-활성관계 3차원 정량분석

Search Result 15, Processing Time 0.021 seconds

3D-QSARs analyses for Tyrosinase Inhibitory Activity of 2-Phenyl-1,4-benzopyrone (Flavones) Analogues and Molecular Docking (2-Phenyl-1,4-benzopyrone 유도체 (Flavones)의 Tyrosinase 저해활성에 관한 3D-QSARs 분석과 분자도킹)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.225-231
    • /
    • 2010
  • To understand the inhibitory activity with changing hydroxyl substituents ($R_l-R_9$) of polyhydroxy substituted 2-phenyl-l,4-benzopyrone analogues (1-25) against tyrosinase (PDB ID: oxy-form; 1WX2), molecular docking and the three dimensional quantitative structure-activity relationships (3D-QSARs: Comparative molecular field analysis (CoMFA) & Comparative molecular similarity indices analysis (CoMSIA)) were studied quantitatively. The statistically best models were CoMFA 1 and CoMSIA 1 model from the results. The optimized CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($dq^2'/dr_{yy'}^2$=1.009 & $q^2$=0.51l) by a progressive scrambling analysis were not dependent on chance correlation. The inhibitory activities with optimized CoMSIA 1 model were dependent upon electrostatic factor (51.4%) of substrate molecules. Contour mapping the 3D-QSAR models to the active site of tyrosinase provides new insight into the interaction between tyrosinase as receptor and 2-phenyl-l,4-benzopyrone analogues as inhibitor. Therefore, the results will he able to apply to the optimization of a new potent tyrosinase inhibitors.

CoMFA and CoMSIA Analysis on the Fungicidal Activity against Damping-off (Pythium ultimum) with N-phenylbenzenesulfonamide Analogues (N-phenylbenzenesulfonamide 유도체들에 의한 모잘록병균 (Pythium ultimum)의 살균활성에 관한 CoMFA 및 CoMSIA분석)

  • Jang, Seok-Chan;Kang, Kyu-Young;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) on the fungicidal activity against damping-off (Pythium ultimum) with N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-34) were studied quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indeces analysis) methodologies. On the whole, the statistical qualities of CoMSIA models with field fit alignment (FF1-FF5) were slightly higher than that of atom based fit alignment (AF1-AF5) but, the deviations of statistical quality between two alignments in case of CoMFA models were slightly lower. The statistical results of CoMFA and CoMSIA model showed that the optimized CoMSIA model (FF1: $r_{cv.}^2\;(q^2)=0.674$ & $r_{ncv.}^2=0.964$) for damping-off is better predictability and fitness for fungicidal activities than CoMFA model (AF5: $r_{cv.}^2\;(q^2)=0.616$ & $r_{ncv.}^2=0.930$). The fungicidal activities according to the information of the CoMSIA (FF1) model were dependence upon the electrostatic and hydrophobic field of the N-phenylbenzene sulfonamide analogues. Therefore, from the results of graphical analyses on the contour maps with CoMSIA (FF3) model, it is expected that the characters of R4-substituent on the N-phenyl ring as hydrophobic and hydrogen bond acceptor will be contributed to the fungicidal activity against damping-off.

3D-QSAR Analysis on the Photosystem II Inhibition Activity of 6-Bromobenzo[4,5]imidazo[$1,2{\alpha}$]pyridin-8,9-dione Analogues (6-Bromobenzo[4,5]imidazo[$1,2{\alpha}$pyridin-8,9-dione 유도체들의 Photosystem II 저해활성에 관한 3D-QSAR 분석)

  • Kim, Se-Gon;Cho, Yun-Gi;Hwang, Tae-Yeon;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.18-23
    • /
    • 2008
  • 3D-QSAR on the inhibitory activities of 6-bromobenzo-[4,5]imidazo[$1,2{\alpha}$]-pyridin-8,9-diones analogues as substrate molecule were studied quantitatively using CoMFA and CoMSIA methods. The statistical values of CoMFA model was better predictability and fitness than CoMSIA model. The inhibitory activities according to the optimized CoMFA 2 model were dependent on the steric field (90.4%). From the CoMFA contour maps, it is found that the branched side chain as R-group will be directly attached to the carbon atom (ipso carbon) of substituent, the inhibitory activities had expected to increase. The positive charge favor groups were placed in the position between imidazol ring and pyridine ring, the inhibitory activities would increase. And if the groups of liner type will be substituted, hydrophilic favor group would raise inhibitory activities.

The Influence of the Substituents for the Insecticidal Activity of N' -phenyl-N-methylformamidine Analogues against Two Spotted Spider Mite (Tetranychus urticae) (두 점박이 응애(Tetranychus urticae) 에 대한 N'-phenyl-N-methylformamidine 유도체의 살충활성에 미치는 치환기들의 영향)

  • Lee, Jae-Whang;Choi, Won-Seok;Lee, Dong-Guk;Chung, Kun-Hoe;Ko, Young-Kwan;Kim, Tae-Joon;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • To understand the influences of the substituents ($R_1{\sim}R_4$) on insecticidal activity of N'-phenyl-N-methylformamidine analogues (1~22) against two spotted spider mite (Tetranychus urticae), comparative molecular field analysis (CoMFA) model and comparative molecular similarity indices analysis (CoMSIA) model as three dimensional quantitative structure-activity relationships (3D-QSARs) model were derived and discussed quantitatively. From the results, the correlativity and predictability ($r^2{_{cv.}}=0.575$ and $r^2{_{ncv.}}=0.945$) of the CoMFA 1 model were higher than those of the rest models. The the CoMFA 1 and CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($d_q{^{2'}}/dr^2{_{yy}}=1.071{\sim}1.146$ & $q^2=0.545{\sim}0.626$) by a progressive scrambling analysis were not dependent on chance correlation. The insecticidal activities from the optimized CoMFA 1 model were depend upon the steric field (62.5%), electrostatic field (28.9%), and hydrophobic field (8.6%) of N'-phenyl-N-methylformamidine analogues. Therefore, the inhibitory activities with optimized CoMFA 1 model were dependent upon steric factor. From the contour maps of the optimized models, it is predicted that the structural distinctions that contribute to the insecticidal activity will be able to applied new potent insecticides design.

Comparative Molecular Similarity Indices Analyses (CoMSIA) on the Herbiridal Activities of New 5-benzofuryl-2-[1-(alkoxy-imino)alkyl]-3-hydroxycyclo-hex-2-en-1-one Derivatives (새로운 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclo-hex-2-en-1-one 유도체들의 제초활성에 관한 비교분자 유사성지수 분석)

  • Sung, Nack-Do;Jung, Ki-Sung;Jung, Hoon-Sung;Chung, Young-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) on the herbicidal activities against in-vitro pre-emergence rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) by new 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives were studied quantitatively using comparative molecular similarity indices analysis (CoMSIA) methodology. The optimized CoMSIA model(A5: $r^2_{cv.}=0.569$ & $r^2_{ncv.}=0.941$) for rice plant exhibited a good correlation with steric (31.6%) and hydrophobic (39.7%) factors of the substrate molecules, and the model (B4: $r^2_{cv.}=0.569$ & $r^2_{ncv.}=0.941$) for barnyardgrass exhibited a good correlation with electrostatic (46.7%) and H-bond acceptor field (30.8%), respectively. The predicted $R_1=SF_5,\;R_2=R_3=R_4=H(P1)$ substituent (Rice plant: $pI_{50}=4.84$ & Barnyardgrass: $pI_{50}=7.21$, ${\Delta}pI_{50}=2.37$) by the model (B4) not only exhibited to the highest herbicidal activity against barnyardgrass, but also exhibited to the highest selecticity between two plants.