• Title/Summary/Keyword: 구조 비선형성

Search Result 1,587, Processing Time 0.028 seconds

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Channel Identification and Predistorter Design Using Stochastic Gradient Method (통계적 경사 근사법에 의한 채널 인식 및 전치 보상기의 설계)

  • 인민교;은창수;김용진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12B
    • /
    • pp.2060-2068
    • /
    • 2000
  • 이 논문은 선형 송·수신 필터의 메모리와 증폭기의 비선형성에 기인하는, 메모리 있는 비선형 시스템의 인식(identification)과 보상에 대해 다룬다. 이와 같은 비선형 시스템은 메모리가 있는 두 개의 선형 시스템 사이에 메모리 없는 비선형 시스템이 있는 것으로 모델링할 수 있으며, 통계적 경사 근사법(stochastic gradient method)으로 선형 시스템의 필터 계수와, 다항식으로 표현되는 비선형 시스템의 계수를 구한다. 이렇게 모델링 되는 통신 채널은 통계적 경사 근사법과 간접 학습 구조를 사용하여 전치 보상기를 설계함으로써 보상한다. 여기서 제시한 비선형 보상 방법은 특정한 통신 채널 모델이 필요 없으며, 적응적으로도 적용이 가능하다.

  • PDF

Behavior of Composite Structure by Nonlinearity of Steel - concrete Interface (I) -Parametric Study for Nonlinear Model of Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동(I) -비선형 경계면 모델에 따른 매개변수 연구-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.499-507
    • /
    • 2003
  • As the load is increased on the steel-concrete composite structure, its interface begins to show nonlinear behavior due to the reduction of interaction, micro-crack, slip and separation, and it causes slip-softening, Therefore, it is essential to consider the partial-interaction analysis technique. Until now, however, full-interaction or, in some instances, the linear-elastic model, which are insufficient to simulate accurate behavior, are assumed in the analysis of composite structure since the analysis method and nonlinear model for interface are very difficult and complicated. Therefore, the design of composite structure is followed by the experimental method which is inefficient-because a number of tests have to be carried out according to the design environments. In this study, we carried out the nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed more accurate structural behavior and performance by maximum tangential traction and slip-softening at the interface. As a result of this study. we were able to prove that the nonlinear model of interface more exactly represents behavior after yielding, such as ultimate load: that initial tangential stiffness of interface has a significant effect on the yielding load of structural members or part: and that the maximum tangential traction and slip-softening mainly effects structural yielding and ultimate load. Therefore, the structural performance of composite structure is highly dependent on the steel-concrete interface or interaction, which may result in initial tangential stiffness, maximum tangential traction and slip-softening in nonlinear model.

Acoustic Nonlinear Characteristics of Ultrasonic Wave Reflected at Contact Interfaces (접촉계면 반사 초음파의 음향 비선형 특성)

  • Park, Byung-Jun;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • In the field application of the conventional acoustic nonlinear technique using through transmission of bulk waves to evaluate the contact acoustic nonlinearity(CAN) in solid-solid contact interfaces like as in the closed crack, it has difficulty to access inner position for attaching the pulsing or receiving transducer. In the present study, a new reflection technique has been suggested to measure the acoustic nonlinearity in solid-solid contact interfaces, which uses both of pulsing and receiving transducers on the same side of target and so that it will be very useful for the field application. For this, based on the linear and the nonlinear contact stiffness estimated by the power-model of the contacting pressure, the nonlinear parameter of the reflected ultrasonic wave at the interfaces has been theoretically calculated. Experimental results in contact interfaces of A1606l-T6 alloy specimens with loading pressure showed good agreement with the theoretical predictions, which proves the validity of the suggested reflection mode technique.

The Study of 1-Way FSI for Strength Assessment of LNG Cargo Containment System (1-way FSI 기법에 의한 LNG 운반선 화물창의 강도평가에 관한 연구)

  • Lee, Sung-Je;Yang, Yong-Sik;Kim, Sung-Chan;Lee, Jang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.527-530
    • /
    • 2011
  • 전 세계적인 LNG 수요 증가에 따라 LNG 운반선의 대형화 및 극한 환경의 항로 선택이 불가피해지고 있다. 이러한 상황에서 LNG의 슬로싱 현상에 따른 화물창의 구조적 안정성 여부가 큰 이슈거리로 떠오르고 있다. 슬로싱 현상에 의한 구조 안전성을 평가하는 가장 이상적인 방법은 유체 영역과 탱크의 복합적인 상호 작용을 완벽하게 구현하는 것이다. 하지만 과도한 계산 시간과 결과의 정확성이 확보되지 못한 상황에서 LNG 운반선 화물창의 안전성 평가에 적용하기에는 문제가 있다. 많은 연구 단체에서는 불규칙적인 슬로싱 압력 신호를 삼각파 등의 형태로 이상화하여 구조해석에 적용하고 있지만 이 또한 유체의 압축성 및 비선형성을 고려하는데 한계를 드러내고 있다. 본 연구에서는 슬로싱 하중을 받는 구조의 안전성을 평가함에 있어 쌍방향(2-way) FSI(Fluid-Structure Interaction)의 과도한 해석 시간 및 수렴의 어려움을 보안하고 유체의 비선형성을 고려할 수 있는 단 방향(1-way) FSI 기법을 이용하는 절차를 제안하고자 한다.

  • PDF

Research on PAE and Linearity of Power Amplifier Using EER and PBG Structure (EER 및 PBG를 이용한 전력 증폭기의 효율 및 선형성 개선에 관한 연구)

  • Lee, Chong-Min;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.584-590
    • /
    • 2007
  • In this paper, the efficiency of power amplifier has been maximized by the application of EER structure, and the linearity has been improved by using PBG structure. This paper has proposed a design of power amplifier in class-F to get the PAE, and to control dynamic power using envelope detector. PBG structure gets high-linearity by removing harmonics arisen from the mismatching of matching circuit. The PAE and the 3rd order IMD have been improved 34.64%, 6.65 dB compared with those of conventional Doherty amplifier, respectively.

Linear Analysis and Non-linear Analysis with Co-Rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads (정적 및 동적 하중을 받는 외팔보 거동에 관한 선형 및 CR 정식화 비선형 예측의 비교)

  • Ko, Jeong-Woo;Bin, Young-Bin;Eun, Won-Jong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the behaviour of a cantilevered beam was predicted to examine the difference between linear and non-linear static, dynamic analysis for a structure by using CR nonlinear formulation. Then, external transverse static and dynamic loads were applied at the free tip of the beam. Classical theories were used for the present linear analysis and co-rotational dynamic FEM program was used for the present nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in both linear and nonlinear analysis. Then, normalized displacement at the tip of the beam was predicted for different frequency ratio and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

Ultrasonic Nonlinearity of AISI316 Austenitic Steel Subjected to Long-Term Isothermal Aging (장시간 등온열화된 AISI316 오스테나이트강의 초음파 비선형성)

  • Gong, Won-Sik;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of $Cr_{23}C_6$ precipitates and ${\sigma}$ phases.

Surf Zone Wave Transformations Simulated by a Fully Nonlinear Boussinesq Equation (완전비선형 Boussinesq방정식을 이용한 쇄파대의 파랑변형 모의)

  • 윤종태;김종무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.296-308
    • /
    • 2001
  • A fully nonlinear Boussinesq equation of Wei et al. is finite differenced by Adams predictor-corrector method. A spatially distributed source function and sponge layers are used to reduce the reflected waves in the domain and wale breaking mechanism is included in the equation. The generated waves are found to be good and the corresponding wale heights are very close to the target values. The shoaling of solitary wave and transformation of regular wave over submerged shelf were simulated successfully. The characteristics of breaking mechanism was identified through the numerical experiment and the results of two dimensional wave propagation test over the spherical shoal showed the importance of nonlinear wave model.

  • PDF