• Title/Summary/Keyword: 구조 민감성

Search Result 81, Processing Time 0.022 seconds

Synthesis and Characterization of Temperature and pH Sensitive Graft Copolymers Based on Pluronic (Pluronic을 기초로 한 온도와 pH에 민감한 그래프트 공중합체의 합성과 특성)

  • Oh, Yeon-Jeong;Lee, Gi-Baek;Park, Sung-Young
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.223-228
    • /
    • 2012
  • Temperature and pH sensitive graft copolymers [Pluronic-$g$-poly(NIPAAm-$co$-MMA), Polymer A] and [Pluronic-$g$-poly( NIPAAm-$co$-MAA), Polymer C] were synthesized by macro radical graft polymerization with $N$-isopropylacrylamide (NIPAAM)/$N,N$-diethylaminoethylmethacrylate (DEAEMA) and $N$-isopropylacrylamide (NIPAAm)/methacrylic acid (MAA) based on Pluronic, respectively. The chemical structure and molecular weight of the graft copolymers was characterized by $^1H$ NMR and gel permeation chromatography. The aqueous solution properties of graft copolymers were measured using a UV-visible spectrophotometer, contact angle and dynamic light scattering equipment with different temperature and pH conditions. The obtained graft copolymers showed a very sensitive phase transition in response to temperature and pH in aqueous media which suggested that the amine group of DEAEMA segment and carboxylic group of MAA had a great influence on the lower critical solution temperatures (LCST) in Polymer A and C, respectively. The graft copolymers can be utilized for drug delivery system and molecular switching applications where responses to temperature and pH changes are relevant.

Seismic Fragility Analysis of Curved Beam with I-Shape Section (I-Shape 단면을 갖는 곡선 보의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.379-386
    • /
    • 2018
  • Purpose: This study was to the fragility evaluation of I-shape curved beam structure subjected to strong ground motions including Gyeongju and Pohang earthquakes Method: In particular, to conduct the analytical model, ABAQUS and ANSYS platform was used in this study. Furthermore, the analytical model using 3D Finite Element Model (FEM) was validated, in comparison to the theoretical solutions at the location of 025L, 05L, and 0.75L in static loading condition. In addition, in order to evaluate the seismic fragility of the curved beam structure, 20 seismic ground motions were selected and Monte-Carlo Simulation was used for the empirical fragility evaluation from 0.2g to 1.5g. Result: It was interesting to find that the probability of the system failure was found at 0.2g, as using 190 MPa limit state and the probability of the failure using 390 MPa limit state was starting from 0.6g. Conclusion: This study showed the comparison of the theoretical solution with analytical solution on I-shaped curved beam structures and it was interesting to note that the system subjected to strong ground motions was sensitive to high frequency earthquake. Further, the seismic fragility corresponding to the curved beam shapes must be evaluated.

The estimation of Draize score by in vitro cytotoxicity using continuous cell lines (In Vitro cytotoxicity에 의한 Draize score 측정 체계 수립)

  • 정민석;최종완
    • Proceedings of the SCSK Conference
    • /
    • 1996.07a
    • /
    • pp.33-51
    • /
    • 1996
  • 화장품의 변질요인은 크게 물리적 또는 화학적 변화에 의한 요인과 미생물오염으로 인한 각종 문제점으로 대별될 수 있다. 이 중에서 미생물 오염문제는 제품의 상품가치에 미치는 영향 뿐만 아니라 지속적인 사용에 의한 피부의 위생적 측면때문에 그 중요성에 대한 인식이 높아지고 있다. 따라서, 제품개발시는 화장품 처방중의 영양성분의 배합, pH, 유화형태, 방부제의 혼합, 분배계수 및 그 안정성을 고려하여야 함은 물론이고 처방중의 모든 원료의 각각에 대한 항균능 및 피부자극여부를 사전에 미리 조사하여 각 제품별로 적당한 방부체계를 선택하는 것은 매우 중요한일이다. 독성실험방법에 있어서 in vivo 실험에 대체할 수 있는 새로운 in vitro 실험방법 수립 즉, 동물실험을 하지 않고 in vitro 실험결과로부터 in vivo 결과를 예측할 수 있도록 새로운 in vitro 실험체계의 가능성을 실험하였다. 4종의 cell line중 transformed mouse fibroblast L929가 본 실험에서 사용하기에 배양상의 용이성과 안정성, 재현성의 관점에서 가장 알맞은 cell line이었다. transformed mouse fibroblast L929를 사용한 NR$_{50}$ assay와 Draize score간의 regression coefficient ${\gamma}$값은 0.91이었다. 혈청은 시험물질의 세포에 대한 민감성에 영향을 주었다. 따라서, modified serum-free method를 이용함으로써 regression coefficient가 증가된 즉, 상관성 및 재현성이 높은 결과를 얻을 수 있었다. 이러한 기술은 독성실험에 실험동물을 사용하지 않고 in vivo test에 대체 할 수 있고, 또한 화학물질에 대한 prescreening으로 이용할 수 있을 것으로 판단된다.원과 섭식장소, 수중생물의 경우는 특히 수온, 수량 영양원등이다.(중략). 본 연구의 접근방법으로는 ASRS의 개념적인 Reference Model을 수립하고 이 Reference Model에 대한 Formal Model로 DEVS(Discrete Event System Specification)을 이용하여 시스템을 Modeling하였다. 이의 Computer Simulation을 위하여 DEVS형식론 환경에서의 Simulation Language인 DEVSim ++ⓒ를 이용하여 시스템을 구현하였다.. 실형 결과로는 먼저 선형 상미분방정식의 예로 mass-damper-spring system, 비선형 상미분방정식의 예로는 van der Pol 방정식, 연립 상미분방정식의 예로는 mixing tank problem 등을 보였으며, 그의 공학에서 일어나는 여러 가지 문제들도 다루었다.화물에 대한 방어력이 증가되어 나타난 결과로 여겨지며, 또한 혈청중의 ALT, ALP 및 LDH활성을 유의성있게 감소시키므로서 감잎 phenolic compounds가 에탄올에 의한 간세포 손상에 대한 해독 및 보호작용이 있는 것으로 사료된다.반적으로 홍삼 제조시 내공의 발생은 제조공정에서 나타나는 경우가 많으며, 내백의 경우는 홍삼으로 가공되면서 발생하는 경우가 있고, 인삼이 성장될 때 부분적인 영양상태의 불충분이나 기후 등에 따른 영향을 받을 수 있기 때문에 앞으로 이에 대한 많은 연구가 이루어져야할 것으로 판단된다.태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X^{0}$ elements)로 가정한다. 즉, [+wh] 의미의 겹의문사는 동일한 구성요 소를 지닌 병렬적 합성어([$[W1]_{XO-}$ $[W1]_{XO}$ ]

  • PDF

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Rehabilitation with minimal increase in occlusal vertical dimension in a patient with excessive tooth wear and edge-to-edge bite (과도한 치아 마모와 절단교합을 보이는 환자에서 최소한의 수직 고경 증가를 통한 구강회복 증례)

  • Hee-Young Kim;Seong-A Kim;Yong-Sang Lee;Keun-Woo Lee;Joo-Hyuk Bang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.143-152
    • /
    • 2023
  • Although tooth wear is a normal process due to aging, severe tooth wear causes various complications such as increased tooth sensitivity, loss of tooth structure, and pulp complications. In the treatment of patients with excessive tooth wear, the evaluation of loss of vertical occlusal dimension should be prioritized. If it is necessary to increase the vertical dimension to secure the restoration space, it is important to establish a treatment plan with the comprehensive analysis and determine the minimum vertical dimension elevation. In this case, 66-year-old male patient with severe worn dentition wanted to restore masticatory function and improve esthetic restoration. In order to determine the appropriate vertical dimension of the patient, we evaluated oral examination, radiographic examination, and diagnostic cast examination, and performed rehabilitation with minimum vertical dimension elevation. As a result of observation for 8 months, the definitive prosthesis was completed with contact of all teeth in centric occlusion, and proper anterior/posterior guidance. Through the above process, satisfactory aesthetic and functional outcomes were obtained.

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa (녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석)

  • Park, Su-Jin;Kim, Soo-Kyoung;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.180-186
    • /
    • 2012
  • Pseudomonas aeruginosa, a Gram-negative bacterium, is an ubiquitous and opportunistic human pathogen, which expresses many virulence factors through quorum sensing (QS) regulation. QscR, one of the QS signal receptors of P. aeruginosa, has unique features that make it possible to distinguish QscR from other QS receptors. In the present study, we focused on amino acid residues responsible for such a broad signal specificity of QscR. Thus we constructed mutant QscRs: $QscR_{T72I}$, $QscR_{R132M}$, and $QscR_{T140I}$ by substituting $72^{nd}$ threonine, $132^{nd}$ arginine, and $140^{th}$ threonine residues with isoleucine, methionine, and isoleucine, respectively by site-directed mutagenesis. When we examined the activity of these mutant QscRs, $QscR_{R132M}$ failed to respond to N-3-oxododecanoyl homoserine lactone (3OC12-HSL), but $QscR_{T72I}$ and $QscR_{T140I}$ remained the ability to respond to 3OC12-HSL despite much reduction of the sensitivity. When we treated a variety of acyl-HSLs with different structure, $QscR_{T72I}$ and $QscR_{T140I}$ showed better responsiveness to N-decanoyl HSL (C10-HSL) or N-dodecanoyl HSL (C12-HSL) that has no oxo-moiety at $3^{rd}$ carbon of acyl group than to 3OC12-HSL, and $QscR_{R132M}$ showed no responsiveness to any acyl-HSLs tested here. In addition, $QscR_{T72I}$ and $QscR_{T140I}$ were inhibited by 5f, a QscR inhibitor as similarly as wild type QscR was. These results suggest that while the $130^{th}$ arginine is crucial in both activity and acyl-HSL binding of QscR, the $72^{nd}$ and $140^{th}$ threonines are important in the activity, but they are little responsible for the discrimination of acyl-HSLs or competitive inhibitor.

Effect of Stream Channel Naturalness on Aquatic Ecological Health in the Han River, South Korea (한강권역 내 하도 자연성이 어류 건강성에 미치는 영향)

  • Kim, Hyunji;Noh, SeongYu;Jeong, Hyun-Gi;Moon, Jeongsuk;Shin, Yuna;Lee, Kyung-Lak;Lee, Su-Woong;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.311-321
    • /
    • 2018
  • The purpose of this study is to investigate effect of stream channel naturalness on ecological health by using environmental factors and Fish Assessment Index (FAI) in the Han River of South Korea. These samples and data have been released from the research project titled Stream/River Ecosystem Survey and Health Assessment, which was conducted in 444 sites in the Han river watershed from 2008 to 2016. All samples were classified into five groups according to a degree of morphological changes of stream. Water chemistry analyses indicated a decline in water quality by decreasing stream channel naturalness, it is assumed that channelized stream was vulnerable to aquatic pollution compared to the natural meandering stream. In the result of frequency of dominant species, sensitive species and insectivore such as Zacco koreanus, Rhynchocypris kumgangensis and Pungtungia herzi were frequently dominated in the natural meandering stream while tolerant species and omnivores such as Carassius auratus and Cyprinus carpio were more dominated in the channelized streams. The FAI in the channelized stream shows decline to average of $46{\pm}25$ compared with that of the natural meandering stream ($80{\pm}20$). The decrease in FAI was highly influenced by changes in matrixes of fish assemblage structure such as number of sensitive species (M3), portion of omnivores (M5) and insectivores (M6). Moreover, annual average FAIs from 2008 to 2016 were significantly correlated with water chemistry, especially TN, TP and BOD ($r^2=0.59$, p<0.0001). Taken together, all the results suggest that the stream channelization could negatively impact on the water quality and fish assemblage structure, leading to degradation in aquatic ecosystem health.

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.