• Title/Summary/Keyword: 구조적 안정도

Search Result 5,264, Processing Time 0.036 seconds

Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction (GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hun;Kim, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • In this paper we applied Ground-Based Synthetic Aperture Radar(GB-SAR) interferometry to detect artificial displacement of a reflector and performed an atmospheric humidity correction to improve the accuracy. A series of GB-SAR images were obtained using a center frequency of 5.3 GHz with a range resolution of 25 cm and a azimuth resolution of $0.324^{\circ}$, all in full-polarization (HH, VV, VH, HV) modes. A triangular trihedral corner reflector was located 160 m away from the system, and the artificial displacements of 0-40 mm was implemented during the GB-SAR image acquisition. The result showed that the RMS error between the actual and measured displacements, averaged in all polarization data, was 1.22 mm, while the maximum error in case of the 40 mm displacement was 2.72 mm at HH-polarization. After the atmospheric correction with respect to the humidity, the RMS error was reduced to 0.52 mm. We conclude that a GB-SAR system can be used to monitor the possible displacement of artificial/natural scatterers and the stability assessment with sub-millimeter accuracy.

An Experimental Study on Flow Characteristics Around Culvert According to Blocked Area (차단면적 변화에 따른 암거주변 흐름특성 실험연구)

  • Kim, Sung Joong;Yeo, Hong Koo;Kang, Jun Gu;Jung, Do Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.467-467
    • /
    • 2016
  • 암거는 일반적으로 용수나 배수용의 수로가 도로, 철도, 제방 등의 아래에 매설 된 수로를 지칭한다. 이러한 암거는 산업발전으로 사회기반시설의 신설 및 확충, 재정비 등으로 많이 활용되고 있다. 최근 들어 기후로 인한 재해가 급증하면서 이러한 시설물에 대한 안정성 및 관리에 대한 관심이 높아지고 있는 것이 현실이다. 특히 소하천은 집수면적 및 유로연장이 짧고 하상경사가 급하기 때문에 홍수에 취약하다. 즉, 빨라진 유속으로 인해 구조물 주변의 세굴에 의한 유실, 토사유출로 인한 하상퇴적, 부유물로 인한 차단으로 인해 통수에 지장을 받아 피해가 발생하게 된다. 이러한 암거시설물 피해는 2차 피해로 이어질 수 있으며 사회기반시설 파괴로 도시기능이 마비되고 인근 주변지역에 침수로 인한 재산 및 인명피해까지 발생시킬 수 있는 피해 잠재능력을 보유하고 있다. 그러나 피해에 대한 예방대책은 유지관리를 통해 지속적으로 관리하는 것이 대부분의 지침 등에 소개된 내용들이다. 본 연구에서는 암거를 대상으로 암거의 폐색으로 인해 암거주변에서 변화되는 흐름특성을 축소모형을 통해 검토하고자 하였다. 암거 축소모형실험은 1.5m 폭을 갖는 직선수로에서 수행하였으며, 암거모형은 도로암거표준도(2008)를 참조하여 $3m{\times}3m$ 수로암거를 대상으로 1/10 축소모형을 제작하였다. 암거유입부 퇴적으로 인한 암거의 차단률(차단면적/암거단면적)은 차단이 발생하지 않는 0% 조건에서부터 10%, 20%, 30%, 40%, 50% 조건에 대해 실험을 수행하였다. 실험결과 차단에 따른 암거 상류단의 수위는 차단이 없는 암거의 경우에 비해 차단율이 높아질수록 암거유입부 수위는 20.4% ~ 82.7% 상승하는 것으로 나타났다. 암거의 차단률이 40% 이상일 경우 높아진 수위로 인해 암거통로의 윗상면부까지 다다르고 있으며 50%일 경우 암거를 통과하는 흐름이 자유수면흐름이 아닌 오리피스 흐름이 발생하는 것으로 나타났다. 암거유입부 차단으로 인한 암거주변의 최대유속은 암거 직하류부에서 주로 발생하여 암거 유출부에서의 최대유속은 차단율이 증가할수록 선형적으로 증가하는 것으로 나타났으며 암거 유출부에서의 유속은 차단전의 조건(0%) 대비 4.2% ~ 35.5% 까지 상승하는 것으로 나타났다. 이와 같은 결과를 토대로 고려하였을 때 대부분 산지부에서 설치되는 암거의 경우 유속이 불가피하게 증가하게 됨으로 유속에 따른 유속조절방안(차단 및 우회시설) 및 세굴대책을 세워야 할 것으로 판단된다.

  • PDF

Analysis of Fe-Deficient Inducing Enzyme and Required Time for Recovery of Nutritional Disorder by Fe-DTPA Treatment in the Fe-Deficient Induced Tomato Cultivars (토마토 품종별 철 결핍 유도후 Fe-DTPA 처리에 의한 영양장애 회복 소요시간과 철 결핍 유발물질 동정)

  • Lee, Seong-Tae;Kim, Min-Keun;Lee, Young-Han;Kim, Young-Shik;Kim, Yeong-Bong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.767-772
    • /
    • 2011
  • The purpose of this study was to find out required time for recovery of nutritional disorder by Fe-DTPA treatment in induced Fe-deficient tomato cultivars and to select stable Fe-chelate in high pH of nutrient solution. The pH levels of nutrient solution were amended with 6.0, 7.0, and 8.0. Then Fe-EDTA (Ethylenediaminetetraacetic acid, ferric-sodium salt), Fe-DTPA (Sodium ferric diethylenetriamine pentaacetate), and Fe-EDDHA (Ethylenediamine-N,N-bis (2-hydroxyphenylacetic acid) ferric-sodium salt)) were treated as Fe $2.0mg\;L^{-1}$ concentration. The Fe-DTPA and Fe-EDDHA were stable in the nutrient solution of pH 6.0~8.0 but Fe-EDTA in nutrient solution of pH 8.0 was to become insoluble by 25%. The Fe $2.0mg\;L^{-1}$ as Fe-DTPA was treated for recovery of Fe deficient tomato seedlings. In case of Redyoyo and Supersunroad cultivars, total chlorophyll and Fe contents of leaves were recovered as much as those of normal leaves in 5 days. The Rafito cultivar for complete recovery was taken 7 days. When Fe $2.0mg\;L^{-1}$ as Fe-DTPA was supplied to Fe-deficient tomato seedlings, in geotype, heme oxigenase recovered as much as normal leaves in 24 hours in the Rafito and Redyoyo. However, it was not remarkable difference by elapsed time in the Supersunroad.

Leased Line Traffic Prediction Using a Recurrent Deep Neural Network Model (순환 심층 신경망 모델을 이용한 전용회선 트래픽 예측)

  • Lee, In-Gyu;Song, Mi-Hwa
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.391-398
    • /
    • 2021
  • Since the leased line is a structure that exclusively uses two connected areas for data transmission, a stable quality level and security are ensured, and despite the rapid increase in the number of switched lines, it is a line method that is continuously used a lot in companies. However, because the cost is relatively high, one of the important roles of the network operator in the enterprise is to maintain the optimal state by properly arranging and utilizing the resources of the network leased line. In other words, in order to properly support business service requirements, it is essential to properly manage bandwidth resources of leased lines from the viewpoint of data transmission, and properly predicting and managing leased line usage becomes a key factor. Therefore, in this study, various prediction models were applied and performance was evaluated based on the actual usage rate data of leased lines used in corporate networks. In general, the performance of each prediction was measured and compared by applying the smoothing model and ARIMA model, which are widely used as statistical methods, and the representative models of deep learning based on artificial neural networks, which are being studied a lot these days. In addition, based on the experimental results, we proposed the items to be considered in order for each model to achieve good performance for prediction from the viewpoint of effective operation of leased line resources.

An experimental investigation of flow characteristics in the tangential and the multi-stage spiral inlets (접선식 및 다단식 나선 유입구 흐름 특성의 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • The vulnerability of urban disasters is increased with the rapid urbanization and industrialization, and the extreme rainfall event is increased due to the global climate change. Urban inundation is also increased due to the extreme rainfall event beyond the capacity limit of facility for the damage prevention. The underground detention vault and the underground drain tunnel are rapidly being utilized to prevent urban inundation. Therefore, the hydraulic review and design analysis of the inlet of the underground facility are important. In this study, the water level of the approach flow according to the inflow discharge is measured and the flow characteristic of the inlet (tangential and spiral) is analyzed. For the spiral inlet, the multi-stage is introduced at the bottom of the inlet to improve the inducing vortex flow at low discharge conditions. In case of the tangential inlet, the discharging efficiency is decreased rapidly with hydraulic jump in the high flow discharge. The rising ratio of the water level in the multi-stage spiral inlet is higher than the tangential inlet, but the stable discharging efficiency is maintained at low and high discharge conditions. And the empirical formula of water level-flow discharge is derived in order to utilize inlets used in this study.

An Integrated Operation/Evaluation System Development for Lane-Level Positioning Based on GNSS Networks (위성항법 기반 차로구분 정밀위치결정 인프라 운영/평가 시스템 개발)

  • Lee, Sangwoo;Im, Sunghyuk;Ahn, Jongsun;Son, Eunseong;Shin, Miri;Lee, Jung-Hoon;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.591-601
    • /
    • 2018
  • This paper discusses methods to effectively operates and evaluates an infrastructure system for lane-level positioning based on satellite navigation. The lane-level positioning infrastructure provides correction information on range measurements with integrity information on the correction to a user with a single frequency (cheap) satellite navigation receiver in order to perform lane-level positioning and integrity monitoring on the position estimate. The architecture and configuration of the lane-level positioning system are described from the systematic level in order to provide a comprehensive insight of the system. The operation/evaluation system for the integrated infrastructure is then presented. The evaluation results of the real implemented system are provided. Based on the results, we discuss requirements to increase the system stability from the operation perspective.

The Distribution and Habitat Characteristic of Tscherskia triton (Rodentia; Cricetidae) in Jeju Island, Korea (제주도에 서식하는 비단털쥐(Tscherskia triton) (설치목; 비단털쥐과)의 분포 현황 및 서식지 특성)

  • Park, Jun-Ho;Kim, Kang Il;Kim, Man-Ho;Oh, Hong-Shik
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.412-423
    • /
    • 2018
  • In this study, we investigated the distribution and habitat of Tscherskia triton from 2014 to 2016 in Jeju Island. Nine individuals of T. triton were observed and captured from four habitat sites. Most of the habitats were of the natural and rural type, and urban type coexisted in some of the areas. The natural type of habitat comprised of forests, shrubs, and grasslands. The habitat of T. triton ranged vertically from 102 m in lowland to 742 m in a mountainous area and was not observed in altitude over 1,000 m. Small brooks, dry streams or wetlands were found to be located nearby the habitat of T. triton. The T. triton was distributed mainly in areas with natural vegetation and artificial plantation in company with the upper story vegetation on the ground of intact or incomplete layer structure, or the area with the relatively large distribution of shrubs and long grassland. The presence of roads and forest paths in these habitats suggested that the T. triton can thrive in areas with human disturbance. The designation of Halla Mountain National Park in Jeju Island as a conservation area prevents damage or loss of the habitat due to any artificial development. However, frequent human disturbances occurring in grassland is tolerated by small mammals. Therefore, in order to help T. triton maintain a stable population density, it is essential that various types of the habitat should be conserved in the middle mountain areas and the grasslands in lowlands should be well protected.

Operational Characteristics of a Cam-type Vegetable Transplanter and Mechanism of a Transplanting Device (캠방식 채소 정식기의 작동 특성 및 식부장치 작동 메커니즘 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.113-124
    • /
    • 2019
  • In this study, the operational characteristics of a cam-type vegetable transplanter which usually used in domestic was analyzed and operating mechanism of a transplanting device was analyzed. The main components and power path of the transplanter were analyzed. The maximum and minimum control cycles according to the moving speed and the plant spacing were analyzed. 3D modeling and simulation were performed to derive the trajectory of the bottom end of the transplanting hopper and the plant spacing at the each operating condition. The simulation results were verified by the field tests. As main findings of this study, the transplanting device has one degree of freedom (DOF) which consist of 13 links, 17 rotating joints and 1 half joint, and each part has composite structure with cam and links. By continuous and repetitive motion of the structures of transplanting device, the transplanting hopper plants the seedling in the ground with a vertical direction, and the seedling was planted stably. The power is transmitted to the driving part and transplanting device from the engine, and the maximum and minimum plant spacing of the transplanting device were about 900 mm and 350 mm, respectively.

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

Method of the Laboratory Wave Generation for Two Dimensional Hydraulic Model Experiment in the Coastal Engineering Fields: Case of Random Waves (해안공학분야에서 2차원 수리모형실험을 위한 실험파 설정방법: 불규칙파 대상)

  • Lee, Jong-In;Bae, Il Rho;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.383-390
    • /
    • 2021
  • The experiments in coastal engineering are very complex and a lot of components should be concerned. The experience has an important role in the successful execution. Hydraulic model experiments have been improved with the development of the wave generator and the advanced measuring apparatus. The hydraulic experiments have the advantage, that is, the stability of coastal structures and the hydraulic characteristics could be observed more intuitively rather than the numerical modelings. However, different experimental results can be drawn depending on the model scale, facilities, apparatus, and experimenters. In this study, two-dimensional hydraulic experiments were performed to suggest the guide of the test wave(random wave) generation, which is the most basic and important factor for the model test. The techniques for generating the random waves with frequency energy spectrum and the range for the incident wave height [(HS)M/(HS)T = 1~1.05] were suggested. The proposed guide for the test wave generation will contribute to enhancing the reliability of the experimental results in coastal engineering.