• Title/Summary/Keyword: 구조적 뇌영상

Search Result 92, Processing Time 0.029 seconds

CHILDHOOD ONSET SCHIZOPHRENIA IN DEVELOPMENTAL ASPECT (소아 정신분열병의 발달학적 측면)

  • Lee, Young-Sik
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • This review is a clinical and research update of recent literature related to childhood onset schizophrenia (with an onset of psychosis by age 12). Childhood onset schizophrenia(COS) is a rare disorder, but that may represent a more homogeneous patient population in which to search for risk or etiologic factors of schizophrenia. These overview data show that COS shares the same clinical and neurobiological features as later onset forms of the disorder. Compared with later onset schizophrenia, however, this subgroup of patients appear to have more severe premorbid neurodevelopmental abnormalities, more cytogenic abnormalies, poor outcome, and potentially greater family histories of schizophrenia and associated spectrum disorders. Future studies of this subgroup may provide important clues as to the genetic basis for schizophrenia and how gene products influence certain feature of the disease, such as age of onset and mode of inheritance.

  • PDF

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

A Study of Changes of Inversion Time Effect on Brain Volume of Normal Volunteers (반전 시간의 변화가 정상인의 뇌 체적에 미치는 영향에 대한 고찰)

  • Kim, Ju Ho;Kim, Seong-Hu;Shin, Hwa Seon;Kim, Ji-Eun;Na, Jae Boem;Park, Kisoo;Choi, Dae Seob
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.286-293
    • /
    • 2013
  • Purpose : The objective of this study was to analyze the brain volume according to the brain image of healthy adults in the 20s taken with different inversion time (TI). Materials and Methods: Brain images of healthy adults in the 20 s were acquired using magnetization prepared rapid acquisition gradient echo (MPRAGE) pulse sequence with 1.5 mm thickness of pieces and four inversion times (1100 ms, 1000 ms, 900 ms, 800 ms). The acquired brain images were analyzed to measure the volume of white matter (WM), gray matter (GM), intracranial volume (ICV). The statistical difference according to brain volume and gender was analyzed for each TI. Results: The brain volume calculated using Freesurfer was WM$486.52{\pm}48.64cm^3$ and GM=$646.83{\pm}57.12cm^3$ in mean when adjusted by mean ICV=$1278.94{\pm}154.92cm^3$. Men's brain volume(WM, GM, ICV) was larger than women's brain volume. In the intrarater reliability test, all of the intraclass correlation coefficients were high (0.992 for WM, 0.988 for GM, and 0.997 for ICV). In the repeated measures analysis of variance, GM and ICV did not show a significant difference at each TI (GM p=0.143, ICV p=0.052), but WM showed a significant (p=0.001). In the linear structure relation analysis, all of the Pearson correlation coefficients were high. Conclusion: WM, GM, and ICV indicated high reliability and solid linear structure relations, but WM showed significant differences at each TI. The brain volume of healthy adults in the 20s could be used in comparison with that of patients for reference purposes and to predict the structural change of brain. It would be needed to conduct additional studies to examine the contract, SNR, and lesion detection ability according to variable TI.

Alzheimer progression classification using fMRI data (fMRI 데이터를 이용한 알츠하이머 진행상태 분류)

  • Ju Hyeon-Noh;Hee-Deok Yang
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.86-93
    • /
    • 2024
  • The development of functional magnetic resonance imaging (fMRI) has significantly contributed to mapping brain functions and understanding brain networks during rest. This paper proposes a CNN-LSTM-based classification model to classify the progression stages of Alzheimer's disease. Firstly, four preprocessing steps are performed to remove noise from the fMRI data before feature extraction. Secondly, the U-Net architecture is utilized to extract spatial features once preprocessing is completed. Thirdly, the extracted spatial features undergo LSTM processing to extract temporal features, ultimately leading to classification. Experiments were conducted by adjusting the temporal dimension of the data. Using 5-fold cross-validation, an average accuracy of 96.4% was achieved, indicating that the proposed method has high potential for identifying the progression of Alzheimer's disease by analyzing fMRI data.

Structural and Functional Changes of The Brain in The Patient with Schizophrenia, Paranoid type : Correlation among Brain MRI Findings, Neurocognitive Function and Psychiatric Symptoms (편집형 정신분열병 환자에서 뇌의 구조적 변화와 기능적 변화 : 뇌자기공명영상소견, 신경인지기능 및 정신증상간의 상관관계)

  • Kang, Cheol-Min;Lee, Young-Ho;Jung, Young-Jo;Lee, Jung-Heum;Kim, Su-Ji;Park, Hyun-Jin
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.54-70
    • /
    • 1998
  • Objectives : The purpose of this study is to evaluate the role of structural and functional changes of the brain in the pathophysiology of schizophrenia. Methods : The authors measured the regions of interest on the magnetic resonance imaging of the brain in 20 patients with paranoid schizophrenia(15 men and 5 women) and 23 control subjects(15 men and 8 women). We also assessed the neurocognitive functions with the Wisconsin Card Sorting Test, the Benton Neuropsychological Assessment, and the Weschler IQ test-Korean version, soft neurologic signs, and psychiatric symptoms in the patient group. Results : In the patient group, all ventricles and basal ganglia including caudate nucleus and globus pallidus were significantly enlarged. Although there were no significant differences between the two groups in the values of right frontal lobe and left temporal lobe, there was a tendency of decrease in the values of right frontal lobe and left temporal lobe. There were significant positive correlations between the values of ventricles and the frequency of previous hospitalization. However, there were no significant correlations between other values of regions of interest and clinical data. The value of the right frontal lobe was significantly correlated with the score of soft neurologic signs, which is suggestive of the neurodevelopmental abnormalities. There were significant correlations between the value of frontal lobe and the scores of the various subscales of Benton Neuropsychiatric Inventory. In contrast, the value of left amygdala and putamen showed significant correlation with the score of verbal IQ on the Weschler IQ test. Structural changes of the temporal lobe areas were related with the positive and general symptom scores on PANSS, while those of the basal ganglia were related with the negative symptom scores. Conclusions : These results suggest that the structural changes of the brain in the patients with schizophrenia show the dual process, which is suggestive that the enlarged ventricle show the neurodegenerative process, while enlarged basal ganglia, and shrinked right frontal and left temporal lobe show the neurodevelopmental abnormalities. Among these changes, structural changes of the frontal lobe related with various neuropsychological deficits, while those of left temporal lobe related with language abnormality. Relative to the relation between structural changes and psychiatric symptoms, structural changes of the temporal lobe areas were related with the positive and general symptoms, while those of the basal ganglia were related with the negative symptoms.

  • PDF

Comparisons of the Plastic Changes in the Central Nervous System in the Processing of Neuropathic Pain (신경병증성 통증의 처리 과정에 있어 중추신경계의 가소성 변화 비교)

  • Kwon, Minjee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.39-48
    • /
    • 2021
  • According to International Associating for the Study of Pain (IASP) definition, neuropathic pain is a disorder characterized by dysfunction of the nervous system that, under normal conditions, mediates virulent information to the central nervous system (CNS). This pain can be divided into a disease with provable lesions in the peripheral or central nervous system and states with an incorporeal lesion of any nerves. Both conditions undergo long-term and chronic processes of change, which can eventually develop into chronic pain syndrome, that is, nervous system is inappropriately adapted and difficult to heal. However, the treatment of neuropathic pain itself is incurable from diagnosis to treatment process, and there is still a lack of notable solutions. Recently, several studies have observed the responses of CNS to harmful stimuli using image analysis technologies, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and optical imaging. These techniques have confirmed that the change in synaptic-plasticity was generated in brain regions which perceive and handle pain information. Furthermore, these techniques helped in understanding the interaction of learning mechanisms and chronic pain, including neuropathic pain. The study aims to describe recent findings that revealed the mechanisms of pathological pain and the structural and functional changes in the brain. Reflecting on the definition of chronic pain and inspecting the latest reports will help develop approaches to alleviate pain.

Optimizations of 3D MRI Techniques in Brain by Evaluating SENSE Factors (삼차원 자기공명영상법의 뇌 구조 영상을 위한 최적화 연구: 센스인자 변화에 따른 신호변화 평가)

  • Park, Myung-Hwan;Lee, Jin-Wan;Lee, Kang-Won;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 2009
  • Purpose : A parallel imaging method provides us to improve temporal resolution to obtain three-dimensional (3D) MR images. The objective of this study was to optimize three 3D MRI techniques by adjusting 2D SESNE factors of the parallel imaging method in phantom and human brain. Materials and Methods : With a 3 Tesla MRI system and an 8-channel phase-array sensitivity-encoding (SENSE) coil, three 3D MRI techniques of 3D T1-weighted imaging (3D T1WI), 3D T2-weighted imaging (3D T2WI) and 3D fluid attenuated inversion recovery (3D FLAIR) imaging were optimized with adjusting SESNE factors in a water phantom and three human brains. The 2D SENSE factor was applied on the phase-encoding and the slice-encoding directions. Signal-to-noise ratio(SNR), percent signal reduction rate(%R), and contrast-to-noise ratio(CNR) were calculated by using signal intensities obtained in specific regions-of-interest (ROI). Results : In the phantom study, SENSE factor = 3 was provided in 0.2% reduction of signals against without using SENSE with imaging within 5 minutes for 3D T1WI. SENSE factor = 2 was provided in 0.98% signal reduction against without using SENSE with imaging within 5 minutes for 3D T2WI. SENSE factor = 4 was provided in 0.2% signal reduction against without using SENSE with imaging around 6 minutes for 3D FLAIR. In the human brain study, SNR and CNR were higher with SENSE factors = 3 than 4 for all three imaging techniques. Conclusion : This study was performed to optimize 2D SENSE factors in the three 3D MRI techniques that can be scanned in clinical time limitations with minimizing SNR reductions. Without compromising SNR and CNR, the optimum 2D SENSE factors were 3 and 4, yielding the scan time of about 5 to 6 minutes. Further studies are necessary to optimize 3D MRI techniques in other areas in human body.

  • PDF

Effects of the Variability of Individual Data on the Group Results; an Acupuncture Study Using fMRI (기능적 자기공명영상을 이용한 침 연구에 있어서 개체 별 다양성이 그룹분석에 미치는 영향 연구)

  • Bae, Seong-In;Jahng, Geon-Ho;Ryu, Chang-Woo;Lim, Sabina
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.277-289
    • /
    • 2009
  • Recently, functional MRI has been used to investigate the neurobiological mechanisms of acupuncture and the specificity of acupoint. The group data tend to be regarded as more important than the individual data in the most of previous studies. This study was designed to investigate the effect of the variability of individual data on the group results. A functional MRI (fMRI) of the whole brain was performed in fifteen healthy subjects during placebo and acupuncture stimulations at the ST36 acupoint. After remaining at rest for 30 seconds, the acupuncture was inserted and twisted at the rate of 2 Hz for 45 seconds and then the acupuncture was removed immediately. This process was repeated three times. Individual and group analyses were performed by voxel-based analyses using SPM2 software. Visual inspections of the activation and deactivation maps from individual sessions have shown the large variability across fifteen subjects. This means that the group data reflected the brain activation responses of only a few subjects. We suggest that the individual data should be presented to demonstrate the effect of acupuncture.

  • PDF

Altered Functional Connectivity of the Executive Control Network During Resting State Among Males with Problematic Hypersexual Behavior (문제적 과잉 성 행동자의 휴지기 상태 시 집행 통제 회로의 기능적 연결성 변화)

  • Seok, Ji-Woo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2019
  • Individuals with problematic hypersexual behavior (PHB) evince the inability to control sexual impulses and arousal. Previous studies have identified that these characteristics are related to structural and functional changes in the brain region responsible for inhibitory functions. However, very little research has been conducted on the functional connectivity of these brain areas during the resting state in individuals with PHB. Therefore, this study used functional magnetic resonance imaging devices with the intention of identifying the deficit of the functional connectivity in the executive control network in individuals with PHB during the resting state. Magnetic resonance imaging data were obtained for 16 individuals with PHB and 19 normal controls with similar demographic characteristics. The areas related to the executive control network (LECN, RECN) were selected as the region of interest, and the correlation coefficient with time series signals between these areas was measured to identify the functional connectivity. Between groups analysis was also used. The results revealed a significant difference in the strength of the functional connectivity of the executive control network between the two groups. In other words, decreased functional connectivity was found between the superior/middle frontal gyrus and the caudate, and between the superior/middle frontal gyrus and the superior parietal gyrus/angular gyrus in individuals with PHB. In addition, these functional Connectivities related to the severity of hypersexual behavior. The findings of this study suggest that the inability to control sexual impulses and arousal in individuals with PHB might be related to the reduced functional connectivity of executive control circuits.

Functional Brain Mapping Using $H_2^{15}O$ Positron Emission Tomography ( II ): Mapping of Human Working Memory ($H_2^{15}O$ 양전자단층촬영술을 이용한 뇌기능 지도 작성(II): 작업 기억의 지도 작성)

  • Lee, Jae-Sung;Lee, Dong-Soo;Lee, Sang-Kun;Nam, Hyun-Woo;Kim, Seok-Ki;Park, Kwang-Suk;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.238-249
    • /
    • 1998
  • Purpose: To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using $H_2^{15}O$ PET. Materials and Methods: Repeated $H_2^{15}O$ PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 match-ing trials. On each trial, four targets, a fixation dot and a probe were presented sequentially and subject's task was to press a response button to indicate whether or not the probe was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Results: Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, promoter cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawings, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. Conclusion: The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system.

  • PDF