• Title/Summary/Keyword: 구속조건 집합체

Search Result 5, Processing Time 0.019 seconds

A Formulation of the Differential Equation on the Equations of Motion and Dynamic Analysis for the Constrained Multibody Systems (구속된 다물체 시스템에 대한 운동 방정식의 미분 방정식화 및 동역학 해석)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.154-161
    • /
    • 1997
  • This paper presents the method to eliminate the constraint reaction in the Lagrange multiplier form equation of motion by using a generalized coordinate driveder from the velocity constraint equation. This method introduces a matrix method by considering the m dimensional space spanned by the rows of the constraint jacobian matrix. The orthogonal vectors defining the constraint manifold are projected to null vectors by the tangential vectors defined on the constraint manifold. Therefore the orthogonal projection matrix is defined by the tangential vectors. For correcting the generalized position coordinate, the optimization problem is formulated. And this correction process is analyzed by the quasi Newton method. Finally this method is verified through 3 dimensional vehicle model.

  • PDF

Stiffness analysis of leaf type holddown spring assemblies (판형 홀드다운 스프링 집합체의 강성해석)

  • 송기남;임현태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.215-222
    • /
    • 1993
  • A general method is proposed for stiffness analysis of the leaf springs only using the geometric data and Young's modulus of the leaf springs. In this method, an engineering beam theory and Castigliano's theory are applied for the derivation of the stiffness of the leaf springs. To show realiability and effectiveness of this method, the stiffness from the proposed method is compared with the results for various types of leaf springs. From these comparisons the proposed method has been proved to be effective and reliable to estimate the stiffness of the leaf springs.

A study on the characteristic analysis of superposed leaf springs with geometric and material nonlinearities (기하학적. 재료적 비선형성을 갖는 중첩된 판 스프링의 특성해석에 관한 연구)

  • 김형구;임정식;김일곤;손동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.13-22
    • /
    • 1990
  • A general analysis method is proposed for analysis of the superposed structures with geometric and material nonlinearities. It is presumed that no friction occurs between structures. It utilizes a shell element for the geometric and material nonlinearities and imposes various deformation constraints for the contact and interaction between structures. To show the reliability and effectiveness of this method, superposed cantilevers for which exact solutions can be obtained and holddown spring assemblies which are now used in PWR reactors are chosen as analysis models. The results of analyses were compared with exact solution in the case of cantilevers and with test results in the case of holddown spring assemblies. The analysis results obtained by this method showed good agreement with the reference values.

A Study on the Fuel Assembly Stress Analysis for Seismic and Blowdown Events (지진 및 냉각재상실사고시의 핵연료집합체 응력해석에 관한 연구)

  • Kim, Il-Kon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.552-560
    • /
    • 1993
  • In this study, the detailed fuel assembly stress analysis model to evaluate the structural integrity for seismic and blowdown accidents is developed. For this purpose, as the first step, the program MAIN which identifies the worst bending mode shaped fuel assembly(FA) in core model is made. And the finite element model for stress calculation of FA components is developed. In the model the fuel rods (FRs) and the guide thimbles are modelled by 3-dimensional beam elements, and the spacer grid spring is modelled by a linear and relational spring. The constraints come from the results of the program MAIN. The stress analysis of the 16$\times$16 type FA under arbitary seismic load is performed using the developed program and modelling technique as an example. The developed stress model is helpful for the stress calculation of FA components for seismic and blowdown loads to evaluate the structural integrity of FA.

  • PDF

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.