• Title/Summary/Keyword: 구속상자

Search Result 12, Processing Time 0.02 seconds

Three Dimensional Metrology of Surface Mounted Solder Pastes Using Bounding Box Formed by Histogram of Gradient Vectors of Point Cloud (점군의 기울기벡터 히스토그램에 의해 형성된 구속상자를 이용한 표면실장 솔더페이스트의 3차원 Metrology)

  • 신동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.674-677
    • /
    • 2003
  • This work presents a method of point-to-surface assignment for 3D inspection of solder pastes on PCB. A bounding box enclosing the solder paste tightly on all sides is introduced to avoid incorrect point-to-surface assignment. The shape of bounding box for solder paste brick is variable according to geometry of measured points. The surface geometry of the bounding box is obtained by using five peaks selected from the histogram of normalized gradient vectors for measured points. By using the bounding box enclosing the solder paste. the task of point-to-surface assignment is successfully executed. Subsequently, the geometrical features are obtained via surface fitting.

  • PDF

3-D Analysis and Inspection of Surface Mounted Solder Pastes by Point-to-Surface (가변 구속상자를 이용한 점-표면배정방법에 의한 표면실장 솔거페이스트의 삼차원 해석 및 검사)

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.210-220
    • /
    • 2003
  • This work presents a method of point to surface assignment fur 3D metrology of solder pastes on PCB. A bounding box enclosing the solder paste tightly on all sides is introduced to avoid incorrect assignment. The shape of bounding box fur solder paste brick is variable according to geometry of measured points. The surface geometry of bounding box is obtained by using five peaks selected in the histogram of normalized gradient vectors. By using the bounding box enclosing the solder pastes, the task of point-to-surface assignment has been successfully conducted, then geometrical features are obtained through the task of surface fitting.

An Experimental Study on Behavior of Box Girder considering Middle Diaphragm Shapes (중간격벽의 형상을 고려한 상자형 거동에 대한 실험적 연구)

  • 정희효;이승열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.501-510
    • /
    • 2002
  • The middle diaphragm of box girder is to prevent the deformation of the cross section of box girder, to distribute load produced at upper flange onto the both sides of web. But if inner space of box girder is barred by the middle diaphragm, it is impossible to use in inner space of box girder and it is felt constraint on maintenance-management. The effect of middle diaphragm of box girder is intended to be expressed by the stiffness of diaphragm in comparing the diaphragm with opening of box girder with diaphragm without opening of box girder through the experiment.

Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test (직접전단실험시 전단상자의 종류에 따른 모래시료의 전단거동)

  • Hong, Young-Ho;Byun, Yong-Hoon;Chae, Jong-Gil;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.51-62
    • /
    • 2015
  • Shear behavior obtained by direct shear tests is dependent on shear box and boundary condition. The objective of this study is to analyze problems of conventional direct shear test (type-A) and provide the reliable results by developing type-C direct shear apparatus. Experimental tests are carried out for Ulleung sand by using type-A and -C direct shear devices. The soil specimens, which are prepared at the relative density of 60%, and are applied to vertical confining stresses of 50, 100, 200, 300, and 400 kPa, are sheared at a constant shear strain rate of 0.5 mm/min. By comparing the results obtained by type-A and -C direct shear apparatus under constant normal load (CNL) condition, the performance of new one is verified. In addition, two constrained conditions including constant normal load (CNL) and constant pressure (CP) are applied to type-C one. Experimental results show that type-A direct shear apparatus has some problems such as rotating of loading plate and upper shear box, and the frictional forces between soil and inner wall of upper shear box. Thus, the shear strengths obtained by type-A device are overestimated or underestimated depending on shear box and boundary condition. On the other hand, type-C device produces clear and consistent test results regardless of constrained conditions. This study represents that type-C direct shear apparatus not only can solve the problems of type-A direct shear apparatus but provide the reliable results.

Research Trend and Prospect in Ferromagnetic Superconductor (강자성 초전도체의 연구동향과 전망)

  • Han, Sang-Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • The findings of ferromagnetic superconductor have attracted much attention not only for fundamental research to investigate how the antagonistic properties of ferromagnetism and superconductivity coexist peacefully but also for potential technological applications. Firstly, in order to help for understanding the ferromagnetic superconductor, I have explained the orbital and paramagnetic pair-breaking effects of magnetic field, which breaks the superconducting Cooper pairs. In addition to such effects of magnetic field, the singlet Cooper pairs become unstable upon going through the ferromagnetic materials by the proximity effect. The proximity effect occurs at the interface of thin films composing of superconductor and ferromagnet and leads to have very short penetration depth of Cooper pairs. However, a type of odd-frequency triplet in comparison with the singlet could be very stable and has a longer effective depth. It needs to be explored for the innovative spintronic devices. Finally, various ferromagnetic superconductors coexist and the lower-dimensional materials under the Quantum confinement effect have been introduced.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Seismic Response Evaluation of Composite Steel-Concrete Box Girder Bridge according to Aging Effect of Piers (교각의 노후도 영향에 따른 강합성 상자형 거더교의 지진응답 평가)

  • Shin, Soobong;Hong, Ji-Yeong;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.319-329
    • /
    • 2020
  • Among the bridges used in Korea, those that are more than 30 years old account for approximately 11% of the total bridges. Therefore, developing a seismic performance-evaluation method is necessary by considering the bridge age. Three composite steel-concrete box girder bridges with port, elastic-rubber, and lead-rubber bearings were selected, and a structural analysis model was developed using the OpenSEESs program. In this study, pier aging was reflected by the reduction in the area of the longitudinal and transverse rebars. Four conditions of 5%, 10%, 25%, and 50% in the degree of pier aging were used. As input earthquakes, 40 near-fault and far-field earthquakes were used, and the maximum displacement and maximum shear-force responses of the piers were obtained and compared. The result shows that as the aging degree increases, the pier strength decreases. Therefore, the pier displacement response increases. To analyze the effects of displacement response and shear resistance, displacement ratio Dratio and shear-force ratio Fratio were evaluated. The older the sample bridge is, the greater is the tendency of Dratio to increase and the smaller is the tendency of Fratio to decrease.

An Evaluation of Tree Roots Effect on Soil Reinforcement by Direct Shear Test (일면전단실험에 의한 수목뿌리의 토양보강효과 평가)

  • Cha, Du Song;Oh, Jae-Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.281-286
    • /
    • 2005
  • Trees enhance slope stability against down slope mass movement through the removal of soil water by transpiration and by the mechanical reinforcement of their roots. To assess the magnitude of this reinforcement on natural slope stability, direct shear tests were made on dry sand reinforced with different array types of roots. Pinus koraiensis was used as root specimens. The peak shear resistance at each normal stress level was measured on the rooted and unrooted soil specimens. Increased soil resistance(${\Delta}S$) by roots was calculated using parameters like internal friction angle and cohesion of tested soil and also evaluated the effects of root array in tested soil. As results, we find that shear resistance increased in tested soil shear box as diameters and arrayed numbers of root specimen increased and cross root array in tested soil had a much greater reinforcing effect than other root arrays. Comparison of traditional root-soil model with experiments showed that simulated reinforce strength by the model was different with those obtained by the experiment due to its linearity.

Comparison of Shear Strength Characteristics of Unsaturated Soil From Triaxial Compression Tests with Direct Shear Tests (삼축시험과 직접전단시험에 의한 불포화토의 전단특성 비교)

  • Hwang, Hui-Seok;Choi, Young-Nam;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • In this paper, shear strength characteristics of an unsaturated soil were compared using triaxial compression tests(CD) and modified direct shear tests and thus feasibility of the newly modified direct shear testing apparatus was confirmed. The shear strength tests of unsaturated state with a soil sample, obtained from a slope where debris flow occurred at Yangpyeong in Kyeunggi province during 2010, were performed. Both tests showed a linear relationship of matric suction with the shear strength under low level of matric suction. The apparent cohesion of the unsaturated soil was also increased linearly with increase of matric suction. As results of comparing two different testing apparatus, estimated values of shear strength parameters of unsaturated soil($c^{\prime}$, ${\phi}^b$) were slightly larger in the modified direct shear tests due to constraint effect of shear box.

Minimum Histogram for Given Turn Sequences (주어진 회전 수열에 대한 최소 히스토그램)

  • Kim, Jae-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1146-1151
    • /
    • 2019
  • Histogram H is an x-monotone rectilinear polygon with a horizontal edge, called by a base, connecting the leftmost vertical edge and the rightmost vertical edge. Here the rectilinear polygon is a polygon with only horizontal and vertical edges and the x- monotone polygon P is a polygon in which every line orthogonal to the x-axis intersects P at most twice. Walking counterclockwise on the boundary of a histogram H yields a sequence of left turns and right turns at its vertices. Conversely, a given sequence of the turns at the vertices can be realized by a histogram. In this paper, we consider the problem of finding a histogram to realize a given turn sequence. Particularly, we will find the histograms to minimize its area and its bounding box. It will be shown that both of the problems can be solved by linear time algorithms.