• Title/Summary/Keyword: 구속길이

Search Result 132, Processing Time 0.022 seconds

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

Bond Strength of Grout-Filled Splice Sleeve Considering Effects of Confinement (구속효과를 고려한 모르타르 충전식 철근이음의 부착강도)

  • Kim, Hyong-Kee;Ahn, Byung-Ik
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.615-622
    • /
    • 2003
  • The purpose of this study is to propose the more reasonable equation of bond strength of grout-filled splice sleeve. To accomplish this objective, total 60 full-sized specimens were tested under monotonic loading. The experimental variables are compressive strength of mortar, embedment length and size of reinforcing bars. Following conclusions are obtained; 1) If the adequacy of existing equations which estimate the bond strength of grout-filled splice sleeve are investigated, they underestimate the bond strength of grout-filled splice sleeve by 8-18%. Also the existing equations have a tendency to underestimate with decrease in the embedment length of reinforcing bars. 2) From the test result of bond failure, the equation which estimates the confining pressure of grout-filled splice sleeve was proposed by making multiple regression analyses of which independent variables are embedment length of reinforcing bars and compressive strength of mortar. This equation predicted the measured bond capacity of this test more accurately than existing equations and eliminated the deviation according to the embedment length of reinforcing bars.

Stress-strain Model of Laterally Confined High-strength Concrete with the Compressive Fracture Energy (압축파괴에너지를 도입한 횡구속 고강도 콘크리트의 응력-변형률 모델)

  • Hong, Ki-Nam;Shim, Won-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • In this paper, a stress-strain model for high-strength confined concrete is proposed using compressive fracture energy. In the compression test performed by author in Reference [6], an acrylic bar with strain gauges was embedded in the center of the specimen to measure the local strain distribution. It was found from the test that the local strain measurement by this acrylic rod is very effective. The local fracture zone length was defined based on the local strain distribution measured by the acrylic rod. Specifically, it was defined as the length where the local strain increases more than twice of the strain corresponding to maximum stress. In addition, the stress-strain relationship of confined concrete with compressive fracture energy is proposed on the assumption that the amount of energy absorbed by the compressive members subjected to the given lateral confining pressure is constant regardless of the aspect ratio and size. The proposed model predicts even results from other researchers accurately.

The Effect of Laser Geometry and Material Parameters on the Single Mode Gain Difference in Quarter Wavelength Shifted DFB Laser above Threshold Current (문턱전류이상에서 구조 및 재료 변수들이 $\lambda$/4위상천이 DFB 레이저의 단일모드 이득차에 미치는 영향)

  • 이홍석;김홍국;김부균;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.75-84
    • /
    • 1999
  • Systematic studies for the effect of the linewidth enhancement factor, the confinement factor, the internal loss and the cavity length on the single mode gain difference and the frequency detuning are performed for $\lambda$/4 phase shifted DFB lasers above threshold. The above threshold characteristics are mainly determined by the linewidth enhancement factor, not by the confinement factor or the parameter defined by the product of the linewidth enhancement factor and the confinement factor. The normalized internal loss defined by the product of the internal loss and the cavity length mainly determines the above threshold characteristics compared to that of the internal loss or the cavity length alone. The effect of the cavity length on threshold characteristics is larger than that of the internal loss in the case of the same normalized internal loss. The above threshold characteristics of quantum well lasers are more resistant to the variations of the confinement factor and the normalized internal loss than those of bulk lasers due to the small linewidth enhancement factor.

  • PDF

Numerical optimization via ALM method (ALM방법에 의한 수치해석적 최적화)

  • 김민수;이재원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.24-33
    • /
    • 1989
  • 본 고에서는 이러한 추세에 따라서, 보다 효율적인 optimization program에 대해서 소개하고자 한다. 사용한 최적화 알고리즘은 ALM(augmented lagrange multiplier) 방법을 적용해서 구속조건이 있는 문제를 구속조건이 없는 문제로 변환한 후, self-scaling BFGS(broydon-flecher-goldfarb-schanno)를 적용한다. BFGS의 각 descent 방향에서의 step 길이는, sequential search로 unimodal point를 구해서, golden section 방법으로 refine을 한후, cubic approximation을 적용해서 구한다.

  • PDF

Strength Characteristics of Square Concrete Column Confined by Carbon Composite Tube (탄소섬유튜브로 횡구속된 각형 콘크리트 기둥의 압축강도 성능에 관한 연구)

  • 홍원기;김희철;윤석한;박순섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both the experimental and analytical investigations of axial behavior of large-scale square concrete columns confined by carbon composite tube are presented. The specimens are filament-wound carbon composite with 90$^{\circ}$+30$^{\circ}$, 90$^{\circ}$+45$^{\circ}$ winding angle respect to longitudinal axis of tube. The instrumented large-scale concrete-filled composite tubes(CFCT) are subjected to monotonic axial loads exerted by 10,000kN UTM. The influence of winding angle, thickness of tube on stress-strain relationships of the confined columns is identified and discussed. Proposed equations to predict both the strength and ductility of confined columns by carbon composite tube demonstrate good correlation with test data obtained from large-scale specimens.

Confining Effect of Mortar Grouted Splice Sleeve on Reinforcing Bar (모르타르 충전식 철근이음과 구속효과)

  • Ahn, Byung-Ik;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The grouted splice steeve has been applied widely due to its superior construction efficiency, such as the unnecessity of post concrete and the large allowable limit to the arrangement of reinforcing bars. However, studies on grout-filled splice steeve still have not been sufficiently peformed. The purpose of this study is to investigate the confining effect of mortar grouted splice sleeve on reinforcing bar, known to strengthen the bond capacity between grout mortar and reinforcing bar. To accomplish this objective, totally 6 full-sized specimens were made and tested under monotonic loading. Each specimens were equipped with strain gauges at the 12 location of sleeve and reinforcing bar. The experimental variables adopted in this study are embedment length and size of reinforcing bars. Following conclusions are obtained; 1) Under ultimate strength condition, the confining pressure of grouted splice sleeve calculated from measured tangential and axial strain of the sleeve is over $200{\sim}300kgf/{cm}^2$ at any location of sleeve and improved with reduction in embedment length of reinforcing bar. 2) Untrauer and Henry's equation which describe bond strength of mortar as a function of its compressive strength and confining pressure, predicted the measured bond capacity of this test within the 5% limits.

Investigation into Crack-Tip Constraint of Curved Wide-Plate using Q-Stress (Q-응력을 이용한 휜 광폭평판 균열부 구속상태 변화 평가)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Kim, Ki-Seok;Shim, Sang-Hoon;Cho, Woo-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1441-1446
    • /
    • 2014
  • In the present paper, the effects of the thickness and width of a curved wide-plate, the crack length, and the strain hardening exponent on the crack-tip constraint of the curved wide-plate were investigated. To accomplish this, detailed three-dimensional elastic-plastic finite element (FE) analyses were performed considering various geometric and material variables. The material was characterized by the Ramberg-Osgood relationship, and the Q-stress was employed as a crack-tip constraint parameter. Based on the present FE results, the variations in the Q-stress of the curved wide-plate with the geometric variables and material properties were evaluated. This revealed that the effect of out-of-plane constraint conditions on the crack-tip constraint was closely related to the in-plane constraint conditions, and out-of-plane constraint conditions affected the crack-tip constraint more than in-plane constraint conditions.

An Analytical Study on the Anchorage Design in Exterior R/C Beam-Column Connections (R/C조 외측 보-기둥 접합부의 정착설계에 대한 해석적 연구)

  • 최기봉
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.133-142
    • /
    • 1992
  • An analytical model was developed for predicting the pullout behavior of straight beam longitudinal bars anchored at exterior beam-column connections. The model incorporates a local bond constitutive simulation capable of considering the effects of anchored bar diameter, yield strength and the spacing, concrete compressive strength, and column pressure on the bond characteristics of deformed bars in confined conditions of exterior joints. The analytical techniques adopted in this study were shown to satisfactorily predict the results of pullout tests on straight bars embedded in confined concrete specimens. An evaluation of the ACI-ASCE Committee 352 development length requirements in exterior joint conditions was made using the developed analytical approach. The results of this analytical evaluation are indicative of the conservatism of the current development length requirements in the confined conditions of exterior joints.

  • PDF

Performance Evaluation of the M-algorithm for Decoding Convolutional Codes (M-알고리듬을 이용한 컨벌루셔널 부호의 복호 성능 평가)

  • 천진영;최규호;성원진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.188-195
    • /
    • 2002
  • The M-algorithm for decoding convolutional codes can significantly reduce the complexity of the Viterbi algorithm by tracking a fixed number of survivor paths in each level of the decoding trellis. It is an easily-implementable algorithm suited for real-time processing of high-speed data. The algorithm, however, generates a sequence of catastrophic errors when the correct path is not included in the set of survivor paths. In this paper, the performance of the M-algorithm obtained from using various decoding complexity levels, frame lengths, and code constraint lengths is presented. The performance gain is quantified when the algorithm is used in conjunction with codes of increased constraint length. In particular, it is demonstrated the gain from the increased code free distance overcompensates the loss from the correct path being excluded from the survivors, when the frame length is short to moderate. Using 64 survivor paths, the signal-to-noise ratio gain obtained by increasing the constraint length from K=7 to K=9, 11, 15 is respectively 0.6, 0.75, and 08dB, when the frame of length L=100 has the frame error rate of 0.01%.