• Title/Summary/Keyword: 구멍 정밀도

Search Result 142, Processing Time 0.017 seconds

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

Manufacturing Techniques of Bronze Medium Mortars(Jungwangu, 中碗口) in Joseon Dynasty (조선시대 중완구의 제작 기술)

  • Huh, Ilkwon;Kim, Haesol
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.161-182
    • /
    • 2021
  • A jungwangu, a type of medium-sized mortar, is a firearm with a barrel and a bowl-shaped projectileloading component. A bigyeokjincheonroe (bombshell) or a danseok (stone ball) could be used as a projectile. According to the Hwaposik eonhae (Korean Translation of the Method of Production and Use of Artillery, 1635) by Yi Seo, mortars were classified into four types according to its size: large, medium, small, or extra-small. A total of three mortars from the Joseon period have survived, including one large mortar (Treasure No. 857) and two medium versions (Treasure Nos. 858 and 859). In this study, the production method for medium mortars was investigated based on scientific analysis of the two extant medium mortars, respectively housed in the Jinju National Museum (Treasure No. 858) and the Korea Naval Academy Museum (Treasure No. 859). Since only two medium mortars remain in Korea, detailed specifications were compared between them based on precise 3D scanning information of the items, and the measurements were compared with the figures in relevant records from the period. According to the investigation, the two mortars showed only a minute difference in overall size but their weight differed by 5,507 grams. In particular, the location of the wick hole and the length of the handle were distinct. The extant medium mortars are highly similar to the specifications listed in the Hwaposik eonhae. The composition of the medium mortars was analyzed and compared with other bronze gunpowder weapons. The surface composition analysis showed that the medium mortars were made of a ternary alloy of Cu-Sn-Pb with average respective proportions of (wt%) 85.24, 10.16, and 2.98. The material composition of the medium mortars was very similar to the average composition of the small gun from the Joseon period analyzed in previous research. It also showed a similarity with that of bronze gun-metal from medieval Europe. The casting technique was investigated based on a casting defect on the surface and the CT image. Judging by the mold line on the side, it appears that they were made in a piece-mold wherein the mold was halved and using a vertical design with molten metal poured through the end of the chamber and the muzzle was at the bottom. Chaplets, an auxiliary device that fixed the mold and the core to the barrel wall, were identified, which may have been applied to maintain the uniformity of the barrel wall. While the two medium mortars (Treasure Nos. 858 and 859) are highly similar to each other in appearance, considering the difference in the arrangement of the chaplets between the two items it is likely that a different mold design was used for each item.