• Title/Summary/Keyword: 구리착물(II)

Search Result 47, Processing Time 0.022 seconds

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate(Ⅰ). Determination of Bismuth, Cadmium, Cobalt and Lead in Water Samples by Coprecipitation-Flotation with Cu-pyrrolidinedithiocarbamate (Ammonium Pyrrolidinedithiocarbamate에 의한 극미량 금속원소의 유기침전 부선에 관한 연구(제1보) Cu-pyrrolidinedithiocarbamate 공침부선에 의한 물시료중 비스무트, 카드뮴, 코발트 및 납의 정량)

  • Jung, Yong June;Choi, Jong Moon;Choi, Hee Seon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.724-732
    • /
    • 1996
  • The organic precipitate flotation using Cu(II)-pyrrolidinedithiocarbamate complex as a coprecipitant was studied for the preconcentration and determination of trace Cd, Pb, Bi and Co in several water samples. Experimental conditions such as pH of solution, amounts of Cu(II) and ammonium pyrrolidinedithiocarbamate(APDC), stirring time, the type and amount of surfactant, etc. were optimized for the effective flotation of analytes. After 3.0 mL of 1,000 ${\mu}g/mL$ Cu(II) solution was added to 1.00 L water sample, the pH of the solution was adjusted to 2.5 with HNO3 solution. Trace amounts of analytes were coprecipitated by adding 2.0% APDC solution. And the precipitates were flotated onto the surface of solution with the aid of nitrogen gas and sodium lauryl sulfate. The floats were collected from mother liquor, and filtered through the micropore glass filter by suction. The precipitates were dissolved with 4 mL conc. HNO3, and then diluted to 25.00 mL with deionized water. The analytes were determined by graphite furnace atomic absorption spectrophotometry. This flotation technique was applied to the analysis of some water samples, and the 90 to 120% of recoveries were obtained from the spiked samples, this procedure could be concluded to be simple and applicable for the trace element analysis in various kinds of water.

  • PDF

Synthesis, Stability Constants, X-ray Structure and Electrochemical Studies of Copper (II) 1, 14-Bis (2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane.tetrahydrochloride Complex (1, 14-Bis(2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane.tetrahydro-chloride 구리착물의 합성, 안정도상수, X-ray 구조 및 전기화학적 연구)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Kim, Seong-Yun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2000
  • A new open-chain ligand containing two phenol groups, 1, 14-Bis (2-hydroxybenzyl)-2, 6, 9, 12-tetraazatetradecane(bsated) was synthesized as its tetrahydrochloride salt and characterized by elemental analysis, mass, infrared and NMR. Its proton dissociation constants ($logK^n{_H}$) and stability constants ($logK_{ML}$) toward $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$ and $Zn^{2+}$ were determined at $25^{\circ}C$ and 0.10M($KNO_3$) ionic strength in aqueous solution by potentiometry. The X-ray structure of its copper (II) complex [Cu(bsated)]$(ClO_4)_2$ was reported: Monoclinic space group $P2_1/n$, $a=17.856(4){\AA}$, $b=17.709(1){\AA}$, $c=8.539(2){\AA}$, $V=2700(2){\AA}$ with Z=4. Electrochemical studies of [Cu(bsated)]$(ClO_4)_2$ complex in dimethyl sulfoxide (DMSO) solution containing tetrabutylammonium perchlorate (supporting electrolyte) were carried out by cyclic voltammograms (CV) and normal pulse voltammetry (NPV).

  • PDF

Preconcentration and Extraction of Copper on Activated Carbon Using 4-Amino-2, 3-dimethyl-1-phenyl-3-pyrazoline or 4-(4-methoxybenzylidenimin) thiophenole (4-Amino-2,3-dimethyl-1-phenyl-3-pyrazoline 또는 4-(4-Methoxybenzylidenimin)thiophenole을 이용한 활성탄에서의 구리의 예비 농축 및 추출)

  • Ghaedi, Mehrorang;Ahmadi, Farshid;Karimi, Hajir;Gharaghani, Shiva
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.23-31
    • /
    • 2006
  • carbon modified methods were used for the preconcentration and determination of copper in some real samples using the flame atomic absorption spectrometry. The copper ions was adsorbed quantitatively on the activated carbon due to their complexation with 4- amino-2, 3-dimethyl-1-phenyl-3-pyrazoline (ADMPP) or 4-(4- methoxybenzylidenimin) thiophenole (MBITP). The adsorbed copper on solid phase was eluted quantitatively using small amount of nitric acid. The influence of important parameters including pH, amount of carrier, flow rate, amount of activated carbon and type and concentration of eluting agent for obtaining maximum recovery were investigated. The methods based on ADMPP and MBITP at optimum conditions is linear over concentration range of 0.05-1.5 g mL-1 and 0.05-1.2 g mL-1 of copper with correlation coefficient of 0.9997 and 0.9994 and both detection limit of 1.4 ng mL-1, respectively. The preconcentration leads to enrichment factor of 310 and break through volume of 1550 mL for both ligands. The method has a good tolerance limit of interfering ion and a selectivity that has been successfully applied for the determination of copper content in real sample such as tap, spring, river and waste water.

Evaluation of the Removal Properties of Cu(II) by Fe-Impregnated Activated Carbon Prepared at Different pH (pH를 달리하여 제조한 3가철 첨착 활성탄에 의한 구리 제거특성 평가)

  • Yang, Jae-Kyu;Lee, Nam-Hee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.345-351
    • /
    • 2008
  • Fe-impregnated activated carbon(Fe-AC) was prepared by Fe(III) loading on activated carbon(AC) in various preparation pH. In order to evaluate the stability of Fe-AC, dissolution of iron from Fe-AC in acidic conditions was measured. In addition, batch experiments were conducted to monitor the removal efficiency of copper by Fe-AC. Results of stability test for Fe-AC showed that the amount of extracted iron increased with contact time but decreased with increasing solution pH. The dissolved amount of iron gradually increased at solution pH 2 and finally 13% of the total iron loaded on activated carbon was extracted after 12 hr. However dissolution of iron was negligible over solution pH 3. Removal of Cu(II) by Fe-AC was greatly affected by solution pH and was decreased as solution pH increased as well as initial Cu(II) concentration decreased. Surface complexation modeling was performed by considering inner-sphere complexation reaction and using the diffuse layer model with MINTEQA2 program.

Bismuth Coated Carbon Fiber Microelectrode with Gallic Acid n-Propyl Ester for Trace Copper Analysis (비스무스코팅 탄소섬유전극과 갤릭산 착물을 사용한 구리 이온의 흔적량 분석)

  • Ly, Suw-Young;Lee, Chang-Hyun;Jung, Young-Sam
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1111-1118
    • /
    • 2007
  • A bismuth-coated carbon fiber microelectrode was prepared using cyclic voltammetry (CV). An analytical application was performed for the copper analysis with Square Wave Stripping Voltammetry (SWSV). Gallic acid n-propyl ester (PG) was used for the complex formation with a copper ion, and electrochemical measurements were performed with a pre-amplifier of a low-current module for nano am per detection. The effects of various parameters on the response were optimized. Analytical working ranges of $0.03-25.9\;{\mu}gl^{-1}$ and $0-25\'mgl^{-1}$ Cu(II) were obtained. The relative standard deviation at $13\;mgl^{-1}$ Cu was 0.9% (n = 12) in optimum conditions. The detection limit was found to have been $0.019\;{\mu}gl^{-1}$, with a 30-sec accumulation time. The developed methods were applied to a copper assay in water samples.

Donor Number of Mixed MeOH Solvents Using a Solvatochromic Cu(Ⅱ)-Complex (분광용매화 구리(II) 착물에 의한 메탄올 이성분 혼합용매들의 Donor Number)

  • Seoung-Kyo Yoo;Jin Sung Kim;Yeol Sakong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.796-801
    • /
    • 1992
  • An empirical Lewis basicity, DN, for eight mixed methanol solvents has been measured by the solvatochromic behavior of the [Cu(tmen)(acac)]$CIO_4$. The change of DN in mixed methanol solvents is not correlated with composition of the mixtures and divided into three groups: (1) dipolar aprotic solvents contribute mainly to the solvation of solute (MeOH-DMSO, MeOH-PY, MeOH-DMF), (2) two components of mixture contribute equally to the solvation of solute (MeOH-MeCN, MeOH-dioxane, MeOH-AC) and (3) methanol contributes entirely to the solvation of solute (MeOH-DCE, MeOH-TCE). The relationship between DN and Kamlet-Taft's $B_{KT}$ for mixed methanol solvents was found to agree well. These DN values also were a useful factor to analysis of reactivity for mixed methanol solvents.

  • PDF

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF