• 제목/요약/키워드: 구름 그림자 탐지

검색결과 8건 처리시간 0.024초

Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발 (Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.989-998
    • /
    • 2021
  • 구름의 영향을 크게 받는 광학위성영상의 활용에 있어 일정 주기 합성은 구름의 영향을 최소화할 수 있는 유용한 방법이다. 최근 주기 합성 시 구름과 구름 그림자 정보가 직접 입력되어 일정 주기 시 두 인자의 영향을 가장 덜 받는 최적의 화소를 선택하는 기법이 제시되었다. 최적의 합성 결과를 도출하기 위해서는 구름과 구름 그림자의 정확한 추출이 필수적이다. 또한 농작물과 같이 분광정보가 중요한 대상의 경우 주기 합성 시 분광정보의 손실이 최소화되어야 한다. 본 연구에서는 구름과 구름 그림자의 높은 탐지정확도를 유지하면서 분광정보의 손실이 적은 탐지 기법을 도출하기 위해, 강원도 고랭지 배추밭을 대상으로 두 분광척도(Haze Optimized Tranformation; HOT, MeanVis)를 이용한 방법과 Sentinel-2A/B에서 제공되는 구름 정보를 비교 분석하였다. 2019년~2021년까지 자료를 분석한 결과 Sentinel-2A/B위성의 구름 정보는 F1값이 0.91인 탐지 정확도를 보이나, 밝은 인공물이 구름으로 오탐지되었다. 이에 비해 HOT에 임계치(=0.05)를 적용해 획득한 구름 탐지 결과는 상대적으로 낮은 탐지 정확도(F1=0.72)를 보였으나, 오탐지가 적어 분광정보의 손실을 최소화하였다. 구름 그림자의 경우, Sentinel-2A/B 부가 레이어에서는 최소한의 그림자만이 탐지된 결과를 볼 수 있었으나, MeanVis에 임계치(= 0.015)를 적용했을 시 지형적으로 발생한 그림자와 구별 가능한 구름 그림자만을 탐지할 수 있었다. 분광척도 기반 구름 및 그림자 정보를 입력해 안정된 월별 합성된 식생지수결과를 획득하였으며, 향후 Sentinel-2A/B의 높은 정확도의 구름 정보를 주기 합성에 입력해 비교할 예정이다.

딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석 (Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning)

  • 김나영;윤예린;최재완;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.351-361
    • /
    • 2024
  • 위성영상은 구름, 구름 그림자, 지형 그림자 등을 포함한 다양한 요소를 포함하고 있으며, 이러한 요소들을 정확히 식별하고 제거하는 것은 원격 탐사 분야에서 위성영상의 신뢰성을 유지하기 위해 필수적이다. 이를 위해 Landsat-8, Sentinel-2, Compact Advanced Satellite 500-1 (CAS500-1)과 같은 위성들은 분석준비자료(Analysis Ready Data)의 일환으로 영상과 함께 사용가능한 데이터 마스크(Usable Data Mask, UDM)를 제공하고 있으며, UDM 데이터의 정확한 구축을 위해 구름 및 구름 그림자 탐지가 필수적이다. 기존의 구름 및 구름 그림자 탐지 기법은 임계값 기반 기법과 인공지능 기반 기법으로 나뉘며, 최근에는 많은 양의 데이터를 처리하는 데 유리한 딥러닝 네트워크를 활용한 인공지능 기법이 많이 사용되고 있다. 본 연구에서는 오픈소스 데이터 셋을 통해 훈련된 딥러닝 네트워크 기반 구름 및 구름 그림자 탐지를 통해 고해상도 위성영상의 UDM 구축 가능성을 분석하고자 하였다. 딥러닝 네트워크의 성능을 검증하기 위해 Landsat-8, Sentinel-2, CAS500-1 위성영상과 함께 제공된 기구축된 UDM 데이터와 딥러닝 네트워크가 생성한 탐지 결과 간의 유사성을 분석하였다. 그 결과, 딥러닝 네트워크가 생성한 탐지 결과는 높은 정확도를 나타냈다. 또한 UDM을 제공하지 않는 고해상도 위성영상인 KOMPSAT-3/3A 영상에 적용하였다. 실험 결과, 딥러닝 네트워크를 통하여 고해상도 위성영상 내에 존재하는 구름 및 구름 그림자를 효과적으로 탐지한 것을 확인하였다. 이를 통해 고해상도 위성영상에서도 딥러닝 네트워크를 사용하여 UDM 데이터를 구축할 수 있는 가능성을 확인하였다.

Landsat-8을 이용한 자동화된 구름 제거 영상 생성 (Fully Automated Generation of Cloud-free Imagery Using Landsat-8)

  • 김병희;김용현;한유경;최원석;김용일
    • 한국측량학회지
    • /
    • 제32권2호
    • /
    • pp.133-142
    • /
    • 2014
  • Landsat은 대표적인 지구관측 위성 중 하나로 지표면 모니터링, 변화탐지, 분류 등 다양한 분야에서 사용되고 있다. 하지만 구름과 구름의 그림자는 지표의 관측과 분석을 제한하는 장애물 중 하나로, Landsat을 사용하기 전 구름을 제거하고 원래의 지표 피복으로 복원하는 과정은 필수적이다. 최근에 발사된 Landsat-8은 기존위성에 비해 2개의 추가적인 costal/aerosol, cirrus 밴드를 제공하며, 이는 구름을 탐지하고 복원하는데 효율적으로 사용될 수 있다. 따라서 본 연구에서는 Landsat-8의 영상에서 구름을 효과적으로 탐지하고, 복원하는 기법을 단계적으로 제안하였다. Otsu 임계화 기법을 통하여 구름과 구름의 그림자 지역을 탐지하였고, 탐지된 구름 및 그림자 지역은 실험 영상과 참조영상을 이용하여 원래의 지표 피복으로 복원 하였다. 복원영상의 정확도 평가에서는 전체정확도가 약 85%, 카파계수가 0.7128로 본 연구에서 제안한 알고리즘이 효율적임을 확인하였다.

음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지 (Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm)

  • 김형규;임중빈;김경민;원명수;김태정
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.637-654
    • /
    • 2023
  • 최근 지구관측 위성이 급격히 발전함에 따라 사용자의 수가 증가하고 있다. 이에 따라 지구관측위성위원회(Committee on Earth Observation Satellites, CEOS)에서는 분석준비자료(Analysis Ready Data, ARD)라는 개념을 제안하고 분석준비자료의 요구 조건을 CEOS ARD for Land (CARD4L)로 정의하여 사용자 친화적인 위성영상을 제공하기 위해 노력하고 있다. 분석준비자료에는 육상분석에 불필요한 픽셀이 식별된 마스크(Unusable Data Mask, UDM)가 영상과 함께 제공되어야 한다. UDM의 종류는 구름, 구름 그림자, 지형그림자 등이 있다. 지형그림자는 지형기복이 큰 산악지형에서 발생되며 지형그림자가 생긴 지역은 복사조도가 낮기 때문에 분석 결과에 오류를 야기시킨다. 기존 지형그림자 탐지연구는 지형그림자 보정을 위해 지형그림자 픽셀을 탐지하는데 목적을 두었지만, 이것은 지형보정 기법으로 대체 가능하다. 따라서 지형그림자 탐지 목적을 확장할 필요가 있다. 산림과 농업분석을 목적으로 한 차세대중형위성 4호(CAS500-4)의 활용을 위해 본 연구에서는 지형그림자 탐지 범위를 태양의 영향을 적게 받는 지역까지 확장하였다. 본 논문은 남북한을 대상으로 지형그림자 마스크 생성을 위해 지형그림자 탐지 가능성을 분석하는데 목적이 있다. 지형그림자 탐지를 위해서 태양의 위치, 지표면의 경사와 경사방향을 이용한 음영기복 알고리즘을 사용하였다. 한반도를 촬영한 5 m급 공간해상도의 RapidEye 영상과 10 m급 공간해상도의 Sentinel-2 영상들을 대상으로 참값과 비교하며 최적의 음영기복 임계값을 결정하였다. 결정된 임계값을 사용하여 지형 그림자 탐지를 수행하고 결과를 분석하였다. 정성적 결과로는 전체적으로 참값과의 형상이 유사함을 확인하였다. 정량적 실험결과는 F1 score가 대부분 0.8에서 0.94 사이인 것을 확인하였다. 본 연구 결과를 바탕으로 남북한을 대상으로 자동적인 지형그림자 탐지가 잘 수행됨을 확인하였다.

Landsat 8 기반 SPARCS 데이터셋을 이용한 U-Net 구름탐지 (U-Net Cloud Detection for the SPARCS Cloud Dataset from Landsat 8 Images)

  • 강종구;김근아;정예민;김서연;윤유정;조수빈;이양원
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1149-1161
    • /
    • 2021
  • 컴퓨터 비전 기술이 위성영상에 적용되면서, 최근 들어 딥러닝 영상인식을 이용한 구름 탐지가 관심을 끌고 있다. 본연구에서는 SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) Cloud Dataset과 영상자료증대 기법을 활용하여 U-Net 구름탐지 모델링을 수행하고, 10폴드 교차검증을 통해 객관적인 정확도 평가를 수행하였다. 512×512 화소로 구성된 1800장의 학습자료에 대한 암맹평가 결과, Accuracy 0.821, Precision 0.847, Recall 0.821, F1-score 0.831, IoU (Intersection over Union) 0.723의 비교적 높은 정확도를 나타냈다. 그러나 구름그림자 중 14.5%, 구름 중 19.7% 정도가 땅으로 잘못 예측되기도 했는데, 이는 학습자료의 양과 질을 보다 더 향상시킴으로써 개선 가능할 것으로 보인다. 또한 최근 각광받고 있는 DeepLab V3+ 모델이나 NAS(Neural Architecture Search) 최적화 기법을 통해 차세대중형위성 1, 2, 4호 등의 구름탐지에 활용 가능할 것으로 기대한다.

Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가 (Evaluation of the Utility of SSG Algorithm for Image Restoration of Landsat-8)

  • 이미희;이달근;유정흠;김진영
    • 대한원격탐사학회지
    • /
    • 제36권5_4호
    • /
    • pp.1231-1244
    • /
    • 2020
  • Landsat 위성은 지구표면을 장기간 관측한 대표적인 광학위성으로 재난 대비/복구 모니터링, 토지 이용 변화, 변화 탐지, 시계열 모니터링 등의 장기적인 변화에 활용하기 적합한 위성이다. 본 연구에서는 간단하고 효율적으로 구름을 탐지 및 제거하기 위해 QA밴드를 이용하여 구름 및 구름 그림자를 탐지하였다. 그 다음, 참조영상의 화소값을 직접 참조하는 것이 아닌 복원을 수행할 영상 내 화소값으로 복원을 수행하는 SSG 알고리즘을 통해 영상의 결측영역을 복원하였다. 본 연구를 통하여 지표를 관측하는 기존의 가시광선 영역뿐만 아니라 열 파장대역의 다양한 토지피복 상태의 정보를 복원하여 정량·정성적으로 평가함으로써 변형된 SSG 알고리즘의 활용 가능성을 제시하고자 하였다.

재난 모니터링을 위한 Landsat 8호 영상의 구름 탐지 및 복원 연구 (Cloud Detection and Restoration of Landsat-8 using STARFM)

  • 이미희;천은지;어양담
    • 대한원격탐사학회지
    • /
    • 제35권5_2호
    • /
    • pp.861-871
    • /
    • 2019
  • Landsat 위성영상은 재난 피해 지역에 대해 주기적이며 광역적인 관측이 가능하여 재난 피해분석, 재난 모니터링 등 활용도가 증가하고 있다. 하지만 광학위성영상 특성상 구름으로 인한 결측된 영역으로 인해 주기적인 재난 모니터링에는 한계가 있어 결측된 영역의 복원 연구가 필요하다. 본 연구에서는 Landsat 8호 영상 취득 시 제공되는 QA밴드를 이용하여 구름 및 구름그림자를 탐지 및 제거하고, STARFM 알고리즘을 통해 제거된 영역의 영상 복원을 수행하였다. 복원된 영상은 기존의 영상 복원 방법으로 복원된 영상과 MLC 기법을 통해 정확도를 비교하였다. 그 결과, STARFM으로 인한 복원방법이 전체정확도 89.40%로, 기존의 영상 복원 방법보다 효율적인 복원방법임을 확인하였다. 따라서 본 연구결과를 통해 향후 Landsat 위성영상을 이용한 재난분석 수행 시 활용도를 높일 수 있을 것으로 기대된다.

불변성 지표물을 이용한 시계열 MODIS 지표 반사율 자료의 검증 (Validation of multi-temporal MODIS surface reflectance product using invariant target)

  • 강성진;김선화;윤정숙;이규성
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2009
  • 현재 NASA에서 제공되는 MODIS 지표반사율자료(MOD09)는 MODIS영상을 이용한 각종 주제자료들의 중요한 입력 자료로 사용되고 있으며, MODIS 지표반사율 자료에 대한 객관적인 검증연구가 필요한 실정이다. 따라서 본 연구에서는 MOD09의 검증관련 초기 연구로서, 남한에 분포하는 불변성 타겟(invariant target)을 대상으로 2006년 일별 250m MODIS 지표반사율자료(MOD09GQK)자료의 객관적 검증을 시도하였다. 우선, MOD09 QA(Quality Assurance)자료를 이용하여 구름의 영향을 받은 화소를 제거한 후, 수치지도와 토지피복도를 이용하여 정의한 불변성 타겟에 해당되는 MOD09영상의 화소값을 추출하였다. 이와 같이 추출된 시계열 MOD09GHK영상의 화소값에 1차 회귀분석을 적용하여 이상 반사율 값을 탐지하고, 그 원인을 분석하였다. 검증 결과 나지지역에 대해서 0.0186의 RMSE값이 나타났으며, 인공물의 경우 0.2891의 RMSE값을 보였다. 발생된 이상 화소를 살펴보면, 구름, 그림자, 눈에 영향에 의해 발생한 것도 있으며, 원인을 알 수 없는 이상 화소들도 분포하였다. 향후 연구에서는 한반도 전역의 MODIS 시계열 반사율영상을 대상으로 MODIS 대기보정알고리즘과 입력인자의 적합성을 판단하기 위한 연구를 진행할 예정이다.

  • PDF