• Title/Summary/Keyword: 교통 혼잡 예측 시스템

Search Result 54, Processing Time 0.022 seconds

Research on the Prediction of Maritime Traffic Congestion based on Big Data (빅데이터 기반 선박 교통 혼잡도 예측에 관한 연구)

  • Jae-Yong Oh;Hye-Jin Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.15-16
    • /
    • 2023
  • 해상교통관제 구역은 항만 시설을 사용하기 위한 입·출항 선박, 연안 해역을 이동하는 선박 등이 서로 복잡하게 운항하는 교통 패턴을 가지고 있다. 이를 안전하고 효과적으로 관리하기 위해 해상교통관제센터(VTS)에서는 선박을 실시간 모니터링하며 관제 업무를 수행하고 있지만, 교통 혼잡 상황에서는 업무 로드의 증가로 인해 관제 공백이 발생하기도 한다. 이에 교통 혼잡도 및 혼잡 구역을 예측한다면보다 효율적인 관제가 가능하지만 현재는 관제사의 경험에 전적으로 의존하고 있는 실정이다. 본 논문에서는 VTS 관점에서의 교통 혼잡을 정의하고, 과거 항적 데이터를 이용하여 항내 선박 교통 혼잡도 및 혼잡 구역을 예측하는 방법을 제안하였다. 또한, 실해역 데이터(대산항 VTS)를 적용하여 제안된 기술이 관제지원 도구로서 활용될 수 있는지 검토하였다.

  • PDF

Research on Prediction of Maritime Traffic Congestion to Support VTSO (관제 지원을 위한 선박 교통 혼잡 예측에 관한 연구)

  • Jae-Yong Oh;Hye-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.212-219
    • /
    • 2023
  • Vessel Traffic Service (VTS) area presents a complex traffic pattern due to ships entering or leaving the port to utilize port facilities, as well as ships passing through the coastal area. To ensure safe and efficient management of maritime traffic, VTS operators continuously monitor and control vessels in real time. However, during periods of high traffic congestion, the workload of VTS operators increases, which can result in delayed or inadequate VTS services. Therefore, it would be beneficial to predict traffic congestion and congested areas to enable more efficient traffic control. Currently, such prediction relies on the experience of VTS operators. In this paper, we defined vessel traffic congestion from the perspective of a VTS operator. We proposed a method to generate traffic networks using historical navigational data and predict traffic congestion and congested areas. Experiments were performed to compare prediction results with real maritime data (Daesan port VTS) and examine whether the proposed method could support VTS operators.

Development of An Adaptive Route Guidance Strategy under Non-recurrent Traffic Congestion (돌발적 교통혼잡하에서 적응형 경로 안내 전략의 수립 및 평가에 관한 연구)

  • 이상건
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.1
    • /
    • pp.175-192
    • /
    • 1997
  • 첨단 교통정보 시스템(ATIS)의 핵심요소라고 할 수 있는 동적경로안내 시스템 (Dynamic Route Guidance System)은 운전자가 목적지에 도착하기까지 실시간 교통정보를 토대로 최적경로를 안내해줌으로써 날로 심화되고 있는 교통혼잡을 최소화 할 수 있으리라 기대를 모으고 있다. 특히 교통사고나 긴급 도로공사 등으로 인해 발생하는 돌발적 교통혼잡하에서는 DRGS의 역할이 더욱 커질 것으로 예상되고 있다. 본 논문은 돌발적 교통혼잡하에서 보다 효과적인 DRGS의 경로안내 전략을 수립하고 평가하는데 그 목적이 있다. 이를 위해 우선 하부구조기반 DRGS와 개인차량기반 DRGS의 장단점을 비교하고 시스템 아키텍쳐와 경로안내전략의 관계를 규명하였다. 또한 효율적인 경로안내를 위해 사용자평형 (User Equilibrium) 경로안내전략과 시스템 최적화(System Optimal) 경로안내 전략을 이상형교통망 (Idealized Network)을 통해 비교 분석하였다. 그리고 돌발적 교통 혼잡하에서 사용자평형 경로 안내를 사용할 경우 야기될 수 있는 Braess Paradox 문제와 시스템 최적경로안내를 사용할 경우 일어날 수 있는 사용자 호응도(User Compliance) 문제를 동시에 감안한 적응 형 경로안내 전략을 개발하였다. 이 방법은 위의 경로 안내 전략들이 가지고 있는 장단점을 상황에 따라 평가하여 경로안내 전략을 선택하는 과정을 수행시간을 절약하지 못할 것으로 평가되면 사용자 호응도를 고려하여 사용자 평형 전략을 선택하도록 하였다. 돌발적 교통 혼잡하에서 통행 시간을 동적으로 예측하기 위해서는 이산 확정적 대기행렬모형 (Discrete Deterministic Queueing Model)이 적용되었다. 한편, 적응형 전략의 효율성을 평가하기 위 해 이상형교통망과 실제 미국 Virginia 주의 Fairfax Country에 소재한 주간 고속도로 66번 과 인접 교통망을 대상으로 각종 돌발교통혼잡상황을 전제로 한 Traffic Simulation과 정보 제공 시나리오를 INTEGRATION Model을 사용하여 실행하였다. 그 결과 적응형전략이 단지 사용자평형 경로안내전략만 사용하는 경우에 비해 교통 혼잡도와 유고상황의 체류정도에 따라 3%에서 10%정도까지 전체통행시간을 절약할 수 있다는 결론을 얻었다.

  • PDF

An Adaptive Strategy for Providing Dynamic Route Guidance under Non-Recurrent Traffic Congestion (돌발적 교통혼잡발생시 동적경로안내를 위한 적응형 알고리즘개발에 관한 연구)

  • 이상건
    • Proceedings of the KOR-KST Conference
    • /
    • 1996.12a
    • /
    • pp.81-108
    • /
    • 1996
  • 첨단교통정보시스템(ATIS)의 핵심 요소라 할 수 있는 동적경로안내 시스템(Dynamic Route Guidance System : DRGS)은 운전자가 목적지에 도착하기까지 실시간 교통정보를 토대로 최적경로를 안내해 줌으로써 날로 심화되어 가고 있는 교통혼잡을 최소화할 수 있으리라 기대를 모으고 있다. 특히 교통사고나 긴급도로공사 등으로 인해 발생하는 돌발적 교통혼잡하에서는 DRGS의 역할이 더욱 커질 것으로 예상되고 있다. 본 논문은 돌발적 교통혼잡하에서 보다 효과적인 DRGS의 경로 안내 알고리즘을 개발하는 데 그 목적이 있다. 이를 위해서 우선 하부구조기반(Infrastructure Based) DRGS와 개인차량기반(In-vehicle Based)DRGS의 장단점을 운전자, 교통행정당국, 그리고 교통체계관점에서 비교하였고, 시스템 아키텍쳐와 경로안내 알고리즘간의 상호관계를 규명하였다. 또한 효율적인 경로안내를 위해 사용자 평형(User Equilibrium)경로안내전략과 시스템최적화(System Optimal) 경로안내전략을 이상형 교통망(Idealistic Network)을 통해 비교분석하였다. 여기에는 현재 ITS-America에서 System Architecture 평가를 위해 사용한 INTEGRATION이라는 ITS Simulation Model과 그 통행저항함수를 사용하였다. 이를 토대로 돌발적 교통혼잡상황 아래서 사용자평형 경로안내를 제공할 경우 야기될 수 있는 Braess` Paradox 문제와, 총통행시간을 최소화하기 위한 시스템최적 경로안내를 제공할 경우 일어날 수 있는 사용자 호응도(User Compliance)문제를 동시에 고려한 적응형 동적경로안내 알고리즘을 개발하였다. 여기에는 돌발적 교통혼잡하에서 통행시간을 동적으로 예측하기 위해 이산형 확정적 대기행렬모형(Discrete Deterministic Queueing Model)이 사용되었다. 한편 알고리즘의 효율성을 평가하기 위해 이상형 교통망과, 실제 미국 Virginia 주의 Fairfax County에 소재한 주간 고속도로 66번(I-66)과 인접 교통망의 교통자료를 사용하여 각종 돌발교통 혼잡 상황을 전제로 한 Traffic Simulation과 정보제공시나\리오를 INTEGRATION Model을 이용해 실행하였다. 그 결과 적응형 알고리즘이 개개인의 최단시간 경로를 제공하는 사용자 평형 경로안내전략에 비해 교통혼잡도와 정체시간의 체류정도에 따라 3%에서 10%까지 전체통행시간을 절약할 수 있다는 결론을 얻었다.

  • PDF

Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System (효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구)

  • Seung-Young Lee;Boo-Won Seo;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.321-327
    • /
    • 2023
  • With the development of artificial intelligence, the prediction system has become one of the essential technologies in our lives. Despite the growth of these technologies, traffic congestion at intersections in the 21st century has continued to be a problem. This paper proposes a system that predicts intersection traffic jams using a Convolutional LSTM (Conv-LSTM) algorithm. The proposed system models data obtained by learning traffic information by time zone at the intersection where traffic congestion occurs. Traffic congestion is predicted with traffic volume data recorded over time. Based on the predicted result, the intersection traffic signal is controlled and maintained at a constant traffic volume. Road congestion data was defined using VDS sensors, and each intersection was configured with a Conv-LSTM algorithm-based network system to facilitate traffic.

Subway Congestion Prediction and Recommendation System using Big Data Analysis (빅데이터 분석을 이용한 지하철 혼잡도 예측 및 추천시스템)

  • Kim, Jin-su
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.289-295
    • /
    • 2016
  • Subway is a future-oriented means of transportation that can be safely and quickly mass transport many passengers than buses and taxis. Congestion growth due to the increase of the metro users is one of the factors that hinder citizens' rights to comfortably use the subway. Accordingly, congestion prediction in the subway is one of the ways to maximize the use of passenger convenience and comfort. In this paper, we monitor the level of congestion in real time via the existing congestion on the metro using multiple regression analysis and big data processing, as well as their departure station and arrival station information More information about the transfer stations offer a personalized congestion prediction system. The accuracy of the predicted congestion shows about 81% accuracy, which is compared to the real congestion. In this paper, the proposed prediction and recommendation application will be a help to prediction of subway congestion and user convenience.

해상교통량 추정기법에 관한 연구

  • Mun, Seong-Bae;Lee, Chun-Gi;Jeon, Seung-Hwan;Jeong, Eun-Seok;Song, Jae-Uk;Jeong, U-Ri
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.249-251
    • /
    • 2013
  • 해상교통안전에 영향을 미치는 여러 가지 해상 개발사업으로 인하여 발생할 수 있는 항해안전의 위험요인을 전문적으로 측정하고 평가하는 것으로 '해상교통안전진단제도'가 있다. 이제도의 주요 평가항목에는 해상교통 현황조사, 해상교통 현황측정, 해상 교통시스템 적정성 평가 및 해상교통 안전대책이 있다. 특히 해상교통 현황측정의 세부 항목 중에는 진단 대상 항만 또는 항로가 추정된 미래의 해상교통량을 수용할 수 있는지를 평가하고 필요 시 관련 해역의 교통 흐름을 조정할 목적으로 수행하는 해상교통혼잡도 평가 있다. 이 연구는 현재 교통혼잡도 평가를 위한 미래 해상교통량 추정기법의 문제점의 현황과 이를 개선하여 신뢰도 있는 교통량 예측이 가능한 통계기법을 개발하고자 하는 것이다.

  • PDF

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

The System for Predicting the Traffic Flow with the Real-time Traffic Information (실시간 교통 정보를 이용한 교통 혼잡 예측 시스템)

  • Yu Young-Jung;Cho Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1312-1318
    • /
    • 2006
  • One of the common services of telematics is the car navigation that finds the shortest path from source to target. Until now, some routing algorithms of the car navigation do not consider the real-time traffic information and use the static shortest path algorithm. In this paper, we prosed the method to predict the traffic flow in the future. This prediction combines two methods. The former is an accumulated speed pattern, which means the analysis results for all past speeds of each road by classfying the same day and the same time inteval. The latter is the Kalman filter. We predicted the traffic flows of each segment by combining the two methods. By experiment, we showed our algorithm gave better precise predicition than only using accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

대중교통 노선배정에 관한 EMME/2 알고리즘의 개선에 관한 연구

  • 이인희;이성모
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10b
    • /
    • pp.466-466
    • /
    • 1998
  • 도로 교통의 혼잡이 나날이 증가되고 있는 현실 상황에서 이를 해결하기 위한 새로운 도로의 무제한적 건설은 정보의 예산절약, 필요한 도로용지 확보의 어려움, 환경오염 문제 등으로 인해 현실적인 한계에 이르렀다. 따라서, 이러한 도로의 혼잡상황에 효과적으로 대처하기 위해서는 승용차를 이용하고자 하는 수요를 대량수송이 가능한 대중교통 이용수요로 전환시켜야 하며, 이를 위해서는 대중교통의 서비스수준 제고 및 운영 관리 체계 등의 개선이 필요하다. 이를 위한 전략적 및 운영적 측면에서의 대중교통계획은 미래 대중교통수요의 정확한 예측을 전제로 하여 수립되며, 이러한 수요의 예측은 필수적으로 현실을 보다 더 정확하게 묘사해 줄 수 있는 통행배정모형을 필요로 한다. 대중교통 통행배정은 규칙적인 배차시간과 정해진 노선을 운행하는 고정서비스 시스템으로 구성되어 있어서 한 링크 상에서도 여러 개의 운행노선을 고려해야 하기 때문에 승용차 통행배정과는 독립적으로 취급되어 왔으며, 이로 인해 그 동안 많은 연구가 선행되어 있지 않은 실정이다. 본 연구는 교통예측 프로그램 중의 하나인 EMME/2에서 사용하고 있는 대중교통수요 통행배정 모형인 최적전략모형(Optimal Strategy Model)의 단점을 보완하기 위한 것이다. 최적전략모형은 수요 배정시, 최적전략에 속하는 경로들에 대해 단순히 운행횟수에 비례하여 수요를 배정함으로 인해서, 예를 들면 운행횟수는 많지만 환승이 많은 경로에 수요를 많이 배정하는 것과 같은 비현실적인 결과가 발생하기도 한다. 본 연구는 이를 개선하기 위해서, 두 가지 대안을 제시했다. 먼저, 노선배정에 우선되는 최적경로 탐색시 환승노드에서의 환승에 대한 벌점을 그 노선의 운행회수에 줌으로써 환승이 많은 경로에 수요의 배정이 적게 되도록 하는 방법과 두 번째로 수요의 배정시 운행횟수가 아닌 목적지까지의 통행시간과 대시시간에 따른 확률적 배분을 통해 기존 모형의 단점을 보완하고자 했다.

  • PDF