• Title/Summary/Keyword: 교통흐름예측

Search Result 76, Processing Time 0.022 seconds

Standards of private sector for debris flow hydraulic model experiment (토석류 수리모형실험 단체표준 제정 현황)

  • Eun Cheul Jang;Byeong Wook Lee;Dongwoo Ko;Jae-Seon Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.7-7
    • /
    • 2023
  • 국내뿐만 아니라 세계적으로도 산사태 발생에 따른 토석류 피해가 빈번하게 발생하고 있으나 아직 토석류 거동에 대한 물리적인 특성을 규명하고, 실험 등을 통한 면밀한 검토가 안 되었다. 토석류는 집중호우 시 토사 내 함수량의 증가로 인해 또는 지진, 화산 발생 시 지각 변동으로 인해 사면의 저항력이 약화되어 발생한다. 이러한 토석류는 재해를 일으키는 매우 위험한 자연 현상이며, 그 규모에 따라 하류부에 큰 피해를 발생시킬 수 있다. 국내에서 수행된 토석류 관련 연구들은 해외에서 주로 수행된 기초연구 결과를 이용한 토석류 피해 발생예측, 위험지도 작성, 토석류 방지 구조물 개발 등의 응용연구가 대부분이며 소규모 모형을 제작하여 수리실험이 진행되었다. 김기환 외(2008)은 토석류 확산형태와 흐름 속도에 대한 모형실험을 수행하였으며, 김영일과 백중철(2011)은 토석류 유동과 퇴적 특성에 대한 실험을 수행하였다. 미국의 경우 미지질조사국(USGS, U.S Geological Survey)에서 1994년부터 지금까지 100 m 길이의 대형 경사수로를 이용하여 토석류 수리모형실험을 수행하고 있으며 이를 통해 토석류의 수위, 충격력, 전파속도, 유출 후 퇴적형상 등에 대한 다양한 실험데이터를 제시하고 있다. 그러나, 현재까지 국내외 토석류 실험에 대한 표준실험방법과 기준이 정립되지 않아 실험결과의 신뢰성을 명확히 증명하기 어려운 실정이다. 토석류로 인한 가장 직접적인 피해 인자인 토석류의 충격력과 전파속도를 수리모형실험을 통해 정량적으로 파악하기 위한 시험 표준으로 시험 절차, 시험 방법 및 적정한 측정장비의 사양 등을 단체표준을 통해 제공함으로써 시험의 불확실성을 최소화하고, 명확한 프로세스에 따른 시험 결과의 신뢰성과 일관성을 확보하고자 한다. 국토교통연구인프라운영원에서는 단체표준 개발을 위한 시험기관협의체를 구성하고, 이해관계인들의 의견을 반영한 토석류 충격력과 전파속도 측정방법(안)을 2022년에 7월 작성하였으며, 현재 이해관계자들의 의견을 수렴하고 중소기업중앙회에 심의를 상정한 상태이다.

  • PDF

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

The Effect Analysis of Smart City Planning on Urban Dynamics Using System Dynamics Method - Focused on Anyang-city, Korea (시스템 다이내믹스를 이용한 스마트도시계획이 도시동태성에 미치는 영향 분석 - 안양시를 중심으로)

  • Yi, Mi Sook;Yeo, Kwan Hyun;Kim, Chang Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.57-67
    • /
    • 2020
  • Recently, smart cities are attracting attention as a solution for a plethora of urban problems, including transportation, environment, safety, and energy. However, despite a substantial body of research dealt with the concept, trends, policy, and legal institutions of smart cities, few researchers have examined how the smart city services influence the cities from the dynamic perspective that considers the entire cycle of a city, including its growth, stagnation, and decline. Thus, it is vital to understand how the city changes with time from the view that a city is a system of sub-elements-population, industry, transportation, environment, housing, and land-closely interacting together. Within this context, this study explores how the urban dynamics of Anyang-city develop for the long term using the System Dynamics method and analyzes the effect of smart city project investment on the dynamics of Anyang-city. According to the result, Anyang-city is a "mature and stable" type, and its population is expected to decrease slowly by 2040. Specifically, the Anyang-city population will be reduced to 553,000 by 2030. It was analyzed that the number will decrease to 543,000 by 2040. It was also found that the investment in smart city projects in Anyang, based on the Plan for Anyang Smart City, would have the following effects: easing population decline, increasing number of businesses, improving urban safety index, and increasing average driving speed. The population will grow by 4,000 and the number of businesses will increase by 761 than before budget investment. The result of this paper is expected to contribute to identifying and predicting the effect of smart city policies from a long-term perspective.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Spatial analysis of financial activities in the Korean urban system (한국 금융의 공간적 특색에 관한 연구)

  • Choi, Jae Heon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.4
    • /
    • pp.321-355
    • /
    • 1993
  • This paper focuses on the geographical pattern of financial activities in the Korean urban system during 1975-1990, based on the assumption that financial activities can reveal control points in Korea's urban economy. In terms of spatial evolution of financial insitutions, different locational characteristics are revealed among different types of financial institutions, implying the role of urban hierarchy. Financial resources are highly concentrated in the capital region, Seoul and Kyonggi Province. Both centralization trends into the large metropolitan cities and relative declines of medium and small cities within the Korean urban system, have been experienced over the study period. Financial activities sustain relatively stable hierarchical structure in the urban hierarchy. Regarding the financial flows, dominant flow zones centered on major metropolitan cities are identified, clearly showing a prominant role of Seoul in financial flows in the entire urban system.

  • PDF

A Legal Study on Safety Management System (항공안전관리에 관한 법적 고찰)

  • So, Jae-Seon;Lee, Chang-Kyu
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.3-32
    • /
    • 2014
  • Safety Management System is the aviation industry policy for while operating the aircraft, to ensure the safety crew, aircraft and passengers. For operating a safe aircraft, in order to establish the international technical standards, the International Civil Aviation Organization has established the Annex 19 of the Convention on International Civil Aviation. As a result, member country was supposed to be in accordance with the policy of the International Civil Aviation Organization, to accept the international standard of domestic air law. The South Korean government announced that it would promote active safety management strategy in primary aviation policy master plan of 2012. And, by integrating and state safety programmes(ssp) and safety management system(sms) for the safe management of Annex 19 is to enforce the policy on aviation safety standards. State safety programmes(ssp) is a system of activities for the aim of strengthening the safety and integrated management of the activities of government. State safety programmes(ssp) is important on the basis of the data of the risk information. Collecting aviation hazard information is necessary for efficient operation of the state safety programmes(ssp) Korean government must implement the strategy required to comply with aviation methods and standards of the International Civil Aviation Organization. Airlines, must strive to safety features for safety culture construction and improvement of safety management is realized. It is necessary to make regulations on the basis of the aviation practice, for aviation safety regulatory requirements, aviation safety should reflect the opinion of the aviation industry.