• Title/Summary/Keyword: 교통신호 제어기

Search Result 100, Processing Time 0.024 seconds

Development A Standard of Traffic Signal Controller and Expectations of Standardization (교통신호제어기 표준 규격 개발)

  • Jeong Jun-Ha;Ahn Gye-Hyung;Oh Young-Tae;Go Gwang-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.31-43
    • /
    • 2006
  • As of March 2005, the standard of traffic signal controllers became effective. The standard presents specifications and functions of a traffic signal controller which collects traffic information, sends it to the traffic control center, and controls traffic signal with adequate traffic signal timing provided by the traffic control center. Since the controllers by the previous standard lack parts compatibility and have different control functions and communication protocol, the maintenance cost has been increased. Also, some important functions like conflict detection have not worked out perfectly. To overcome these disadvantages, first of all, this standard secures hardware compatibility. Conflict detection method has been enhanced. Communication protocol to the traffic control center was included in the standard. With this standard, independent maintenance system and prompt treatment of hardware malfunctions becomes possible. Also, the unified intersection traffic control method will increase traffic safety.

  • PDF

An Experimental Study on the Application of NTCIP to Korean Traffic Signal Control System (교통신호제어시스템 NTCIP 통신규약 적용성 실험 연구)

  • Go, Gwang-Yong;Jeong, Jun-Ha;Lee, Seung-Hwan;An, Gye-Hyeong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.19-33
    • /
    • 2006
  • This paper presents the results of an experimental study on the application of NTCIP protocol to Korean traffic signal control system. For this study the communication Protocol of the existing traffic signal control system was adjusted to meet NTCIP standard. Management information base for Korea real-time traffic signal control system, message library of OER, traffic control center management software supporting SNMP/SFMP Protocol, and agent softwares for local controllers were developed during the experimental study. The applicability test of the adjusted system by NTCIP standard was performed. Fifty eight Percent of communication packets were lost at 2.400bps communication speed, which made the operation impossible. The experimentations with communication speeds 4,800bps and 9,600bps did not cause problems. In conclusion, to apply the NTCIP standard to domestic real-time traffic control system, communication environments need to be upgraded to 4,800bps or higher.

A Method of Generating Traffic Travel Information Based on the Loop Detector Data from COSMOS (실시간신호제어시스템 루프검지기 수집정보를 활용한 소통정보 생성방안에 관한 연구)

  • Lee, Choul-Ki;Lee, Sang-Soo;Yun, Byeong-Ju;Song, Sung-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.34-44
    • /
    • 2007
  • Many urban cities deployed ITS technologies to improve the efficiency of traffic operation and management including a real-time franc control system (i.e., COSMOS). The system adopted loop detector system to collect traffic information such as volume, occupancy time, degree of saturation, and queue length. This paper investigated the applicability of detector information within COSMOS to represent the congestion level of the links. Initially, link travel times obtained from the field study were related with each of detector information. Results showed that queue length was highly correlated with link travel time, and direct link travel time estimation using the spot speed data produced high estimation error rates. From this analysis, a procedure was proposed to estimate congestion level of the links using both degree of saturation and queue length information.

  • PDF

A Study on the Wireless Roadsud Traffic-Signal System (무선 표지병 교통신호기에 관한 연구)

  • Chai, Sang-Hoon;Park, Hyun-Sik;Kim, Jwa-Yeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4A
    • /
    • pp.216-223
    • /
    • 2003
  • This study concerns implementation of the roadstud traffic-signal system with RF wireless telecommunication. It is used for improving the problem and limit of the roadstud that currently being used simply for leading deceleration of vehicles and indicating center line of roads. With the use of wireless roadstud traffic signal system, not only it is possible to improve the problem and limit of the currently being used roadstud but also it is possible to reduce installing and repairing fee of it.

A Real-time Traffic Signal Control Algorithm based on Travel Time and Occupancy Rate (통행시간과 점유율 기반의 실시간 신호운영 알고리즘)

  • Park, Soon-Yong;Jeong, Young-Je
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.671-680
    • /
    • 2016
  • This research suggested a new real-time traffic signal control algorithm using fusion data of the travel time and the occupancy rate. This research applied the travel time data of traffic information system to traffic signal operation, and developed the signal control process using the degree of saturation that was estimated from the travel time data. This algorithm estimates a queue length from the travel time based on a deterministic delay model, and includes the process to change from the queue length to the degree of saturation. In addition, this model can calculate the traffic signal timings using fusion data of the travel time and the occupancy rate based on the saturation degree. The micro simulation analysis was conducted for effectiveness evaluation. We checked that the average delay decreased by up to 27 percent. In addition, we checked that this signal control algorithm could respond to a traffic condition of oversaturation and detector breakdown effectively and usefully. This research has important contribution to apply the traffic information system to traffic signal operation sectors.

Development of a Communication Protocol for a Digital Traffic Signal Controller (디지털 교통신호제어기 통신체계 개발)

  • Kim, Min-Sung;Ko, Kwang-Yong;Lee, Choul-Ki;Jeong, Jun-Ha;Heo, Nak-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • Most of the current traffic signal controller use load switches to transmit high voltage power to the signal lamps. The direct transmission of high voltage power may cause a lot of problems like leakages of electric power, obstructions of pedestrian, environmental disfigurements. To overcome these problems, the development of digital type signal controller has been trying in the various methods. Digital communication between a master controller and signal lamps is the most important part to improve control performance in the digital type controller. A communication system for the digital signal controller was developed in this study. The system bases on CAN specification, includes ID structure for most peripheral devices like loops, signal lamps, push buttons, police switches. The operability of this system verified with a software based CAN simulation tool.

A Fuzzy Traffic Controller with Asymmetric Membership Functions (비대칭적인 소속 함수를 갖는 퍼지 교통 제어기)

  • Kim, Jong-Wan;Choi, Seung-Kook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2485-2492
    • /
    • 1997
  • Nowadays the traffic conditions have been getting worse due to continuous increase in the number of vehicles. So it has become more important to manage traffic signal lights efficiently. Recently fuzzy logic is introduced to control the cycle time of traffic lights adaptively. Conventional fuzzy logic controller adjusts the extension time of current green phase by using the fuzzy input variables such as the number of entering vehicles at the green light and the number of waiting vehicle during the red light. However this scheme is inadequate for an intersection with variable traffic densities. In this paper, a new FLC with asymmetric membership functions that reflects more exactly traffic flows than other FLCs with symmetric ones regardless of few control rules is propsed. The effectiveness of the proposed method was shown through simulation of a single intersection. The experimental results yielded the superior performance of the proposed FLC in terms of the average delay time, the number of passed vehicles, and the degree of saturation.

  • PDF

Deep Learning Based Emergency Response Traffic Signal Control System

  • Jeong-In, Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.121-129
    • /
    • 2023
  • In this paper, we developed a traffic signal control system for emergency situations that can minimize loss of property and life by actively controlling traffic signals in a certain section in response to emergency situations. When the emergency vehicle terminal transmits an emergency signal including identification information and GPS information, the surrounding image is obtained from the camera, and the object is analyzed based on deep learning to output object information having information such as the location, type, and size of the object. After generating information tracking this object and detecting the signal system, the signal system is switched to emergency mode to identify and track the emergency vehicle based on the received GPS information, and to transmit emergency control signals based on the emergency vehicle's traveling route. It is a system that can be transmitted to a signal controller. This system prevents the emergency vehicle from being blocked by an emergency control signal that is applied first according to an emergency signal, thereby minimizing loss of life and property due to traffic obstacles.