• Title/Summary/Keyword: 교통신호제어기

Search Result 27, Processing Time 0.022 seconds

Development of a Communication Protocol for a Digital Traffic Signal Controller (디지털 교통신호제어기 통신체계 개발)

  • Kim, Min-Sung;Ko, Kwang-Yong;Lee, Choul-Ki;Jeong, Jun-Ha;Heo, Nak-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • Most of the current traffic signal controller use load switches to transmit high voltage power to the signal lamps. The direct transmission of high voltage power may cause a lot of problems like leakages of electric power, obstructions of pedestrian, environmental disfigurements. To overcome these problems, the development of digital type signal controller has been trying in the various methods. Digital communication between a master controller and signal lamps is the most important part to improve control performance in the digital type controller. A communication system for the digital signal controller was developed in this study. The system bases on CAN specification, includes ID structure for most peripheral devices like loops, signal lamps, push buttons, police switches. The operability of this system verified with a software based CAN simulation tool.

The State CHDL Description and Symbolic Minimization Algorithm Development for State Machine Synthesizer (상태합성기 설계를 위한 상태 CHDL 기술 및 기호최소화 알고리듬개발)

  • Kim, Hi-Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.127-136
    • /
    • 1989
  • A Symbolic cover Minimization Algorithm and State CHDL Description for Finite State Machine Synthesizer are Presented. State CHDL are used for design of PLA based finite state machine, also the symbolic cover minimization algorithms are based upon single cube containment and distance 1 merging algorithms. The procedure for state machine synthesizer has been applied to practical example, including traffic light controller by using Boulder Optimal Logic Design System.

  • PDF

Design of Traffic Signal Controller Using Fuzzy Transition Timed Petri Net (퍼지 트랜지션 시간 페트리 네트를 이용한 교통신호제어기 설계)

  • 모영승;김정철;김진권;황형수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.264-267
    • /
    • 2000
  • The need for including time variables in various type of modeled Discrete Event Dynamic Systems(DEDSs) is apparent since the modeled systems are real time in nature. In the real world, almost all event is related to time. A Time Petri Net(TPN) is one of methods for model ins and analyzing of DEDSs with real time values. Two time values, ${\alpha}$$\sub$i/ and ${\beta}$$\sub$i/ are defined for each transition. In this paper, Ire present Fuzzy Transition Timed Petri Net(FTTPN) to determine the optimal transition firing time between ${\alpha}$$\sub$i/ and ${\beta}$$\sub$i/ using fuzzy theory. The traffic signal controller in an intersection is modeled and analyzed by FTTPN.

  • PDF

Simulation Model Construction for Real-Time Monitoring of Traffic Signal Controller (교통신호제어기 실시간 감시를 위한 시뮬레이션 모델 구축)

  • Kim, Eun-Young;Chang, Dae-Soon;Jang, Jung-Sun;Park, Sang-Cheol
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2018
  • This paper proposed the real-time monitoring methodology of a traffic signal controller. The proposed methodology is based on the simulation technology, and it is necessary to construct a simulation model imitating the behavior of a traffic signal controller. By executing the simulation model, we can obtain the 'nominal system trajectory' of the traffic signal controller. On the other hand, an IoT(Internet of Things)-based monitoring device is implemented in a traffic signal controller. Through the monitoring device, it is possible to obtain the 'actual system trajectory'. By comparing the nominal system trajectory and the actual system trajectory, we can estimate the degree of deterioration of a traffic signal controller.

A Study for Optimal Phase Design of Traffic Signal Using Fuzzy Theory (퍼지 논리를 이용한 최적교통신호 현시설계에 관한 연구)

  • 진현수;홍유식;김성환
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.117-133
    • /
    • 1996
  • In the paper a superior performance algorithm compared to the existing vehicle actuated controller and time fixed controller and the additional controller is described through realization of fuzzy traffic phase controller. Fuzzy theory is encouraging since the application is similar to human's decision ability that is approately coped with uncertain conditions. The paper presents that selection of the phase adequated the variable traffic conditions through the fuzzy theory algorithm and decision of optimal cycle time approated the uncertain traffic volume are predominant in traffic jam solution compared to the existing Webster's cycle time decision method and the sequential traffic phase design method and dual-ring phase operation system.

  • PDF

Environmental Testing for Precision Parts and Instruments (정밀부품 및 기기에 대한 환경시험기술)

  • Choi, Man-Yong;Park, Jeong-Hak;Yun, Kyu-Tek
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.642-649
    • /
    • 2001
  • Precision parts and instruments are tested to evaluate performance in development-process and product-step to prement a potential defect due to a failure design. In this paper, Environmental test technology, which is the basis of reliability analysis, is introduced with examples of test criterion, test method for products, encoder and traffic signal controller, and measuring instruments. Recently, as the importance of the environmental test technology is recognised. It is proposed that tranining of test technician and technology of jig design and failure analysis are very essential.

  • PDF

Detection of Deterioration of Traffic Signal Controller Through Real-Time Monitoring (실시간 감시를 통한 교통신호제어기의 열화 감지)

  • Kim, Eun Y.;Jang, Joong S.;Oh, Bong S.;Park, Sang C.
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose: A traffic signal controller needs to control and coordinate to ensure that traffic and pedestrians move as smoothly as possible. Since a traffic signal controller has a significant impact on the safety of vehicles and pedestrians, it is important to monitor the failure and deterioration of the traffic signal controller. The purpose of this paper is to propose an IoT (Internet of Things)-based monitoring system for a traffic signal controller. Methods: Every traffic signal controller has a nominal system trajectory specified when it is deployed. The proposed IoT-based monitoring system collects the system trajectory information through real-time monitoring. By comparing the nominal system trajectory and the monitored system trajectory, we are able to detect the failure and deterioration of the traffic signal controller. Conclusion: The proposed IoT-based monitoring system can contribute to the safety of vehicles and pedestrians by maximizing the availability of a traffic signal controller.