• Title/Summary/Keyword: 교통수요 보정

Search Result 16, Processing Time 0.022 seconds

Compensation and Amendment of Highway Travel Demand Forecasting (고속도로 교통수요 보정모형에 관한 고찰)

  • Lee, Eui-Jun;Kim, Young-Sun;Yi, Yong-Ju;OH, Young-Tae;Choi, Keechoo;Yu, Jeong Whon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.86-95
    • /
    • 2013
  • In this study, a model of compensation and amendment of forecasted travel demand was developed to calculate the range of values depends on the changes in the risk factors, selecting factors that might affect traffic demand changes among risk factors. Selected factors are as follows: influenced area population, the number of registrated vehicle per person, ratio of service industry workers, and city intervals. Then this model is applied to six routes of expressway and the calculated value were compensated with error rate being reflected on each quartile value with respect to influenced area population (200,000 people standards). Result from appling developed model to Cheongwon-Sangju expressway suggests that the model could compensate the error rate by more than 50%, which in turn validate the effectiveness of the model developed. Some limitations and future research agenda have also been identified.

Development of Adjustment Factors for The Shared Left-turn Lane with U-Turn at the Signalized Intersection (신호교차로에서 좌회전.유턴 공용차로 보정계수 산정)

  • 안형기;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.5
    • /
    • pp.43-56
    • /
    • 2000
  • 본 연구의 목적은 우리 나라의 주요 간선도로상에서 운영되고 있는 좌회전 ·유턴 공용차로에 대한 적절한 보정계수를 산정하는 것이다. 이에 본 연구에서는 좌회전 2차로(1차로 유턴공용) 3개 지점 및 좌회전 ·유턴 공용 1타로 3개 지점에 대해서 연구를 수행하였으며, 유턴 전용차로 2개 지점에 대해서도 연구를 수행하였다. 좌회전 유턴 공용차로에서의 유턴 비율에 따른 포화교통류율의 변화를 분석하였으며, 회귀모형을 도출하였다. 본 연구의 연구 결과는 다음과 같다. 첫째, 중앙분리대로 분리된 유턴 전용차로를 대상으로 분석한 유턴 포화교통류율은 2,105(pcphgpl)로 산정되었다. 둘째, 좌회전 2차로(1차로 유턴공용)에 대하여 3개지점을 대상으로 유턴 비율에 따른 포화교통류율의 살펴보고 적절한 보정계수를 산정하였으며 각 차로별 좌회전 포화교통류율은 1차로는 2,105(Pcphgpl), 2차로는 2,023(Pcphgpl)이 산정되었다. 또한 유턴 비율과 포화교통류율에 따른 회귀모형을 산정하였다. 셋째, 좌회전 ·유턴 용 1차로에 대하여 3개지점을 대상으로 유턴 비율에 따른 포화교통류율의 변화를 살펴보고, 적절한 보정계수를 산정하였으며, 좌회전 포화교통류율은 2,143(Pcphgpl)으로 산정되었다. 또한 유턴 비율과 포화교통류율에 따른 회귀모형을 산정하였다. 넷째, 회귀모형의 산정결과 좌회전 ·유턴 공용차로에서는 유턴 비율에 따라서 포화교통류율이 감소하는 것으로 나타났다. 본 연구의 기대효과로는 유턴 비율에 따른 좌회전 유턴 공용차로의 포화교통류율 감소에 대하여 용량분석시 적용할 수 있는 보정계수를 제시함으로서 보다 정확한 신호교차로의 운영분석을 할 수 있다고 판단된다. 또한 신호시간 설계시에도 유턴 수요에 따른 적절한 설계에 도움을 줄 수 있으며 따라서 신호교차로의 운영효율을 증대시키는데 기여할 것으로 판단된다.

  • PDF

The study on error, missing data and imputation of the smart card data for the transit OD construction (대중교통 OD구축을 위한 대중교통카드 데이터의 오류와 결측 분석 및 보정에 관한 연구)

  • Park, Jun-Hwan;Kim, Soon-Gwan;Cho, Chong-Suk;Heo, Min-Wook
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.109-119
    • /
    • 2008
  • The number of card users has grown steadily after the adaption of smart card. Considering the diverse information from smart card data, the increase of card usage rate leads to various useful implications meaning in travel pattern analysis and transportation policy. One of the most important implications is the possibility that the data enables us to generate transit O/D tables easily. In the case of generating transit O/D tables from smart card data, it is necessary to filter data error and/or data missing. Also, the correction of data missing is an important procedure. In this study, it is examined to compute the level of data error and data missing, and to correct data missing for transit O/D generation.

Origin and destination matrix estimation using Toll Collecting System and AADT data (관측 TCS data 및 AADT 교통량을 이용한 기종점 교통량 보정에 관한 연구)

  • 이승재;장현호;김종형;변상철;이헌주;최도혁
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.49-59
    • /
    • 2001
  • In the transportation planning process, origin and destination(O-D) trip matrix is one of the most important elements. There have been developments and applications of the methodology to adjust old matrices using link traffic counts. Commonly, the accuracy of an adjusted O-D matrix depends very much on the reliability of the input data such as the numbers and locations of traffic counting points in the road network. In the real application of the methodology, decisions on the numbers and locations of traffic counting points are one of the difficult problems, because usually as networks become bigger, the numbers of traffic counting points are required more. Therefore, this paper investigates these issues as an experiment using a nationwide network in Korea. We have compared and contrasted the set of link flows assigned by the old and the adjusted O-D matrices with the set of observed link flows. It has been analyzed by increasing the number of the traffic counting points on the experimental road network. As a result of these analyses, we can see an optimal set of the number of counting links through statistical analysis, which are approximately ten percentages of the total link numbers. In addition, the results show that the discrepancies between the old and the adjusted matrices in terms of the trip length frequency distributions and the assigned and the counted link flows are minimized using the optimal set of the counted links.

  • PDF

Tour-based Personalized Trip Analysis and Calibration Method for Activity-based Traffic Demand Modelling (활동기반 교통수요 모델링을 위한 투어기반 통행분석 및 보정방안)

  • Yegi Yoo;Heechan Kang;Seungmo Yoo;Taeho Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.32-48
    • /
    • 2023
  • Autonomous driving technology is shaping the future of personalized travel, encouraging personalized travel, and traffic impact could be influenced by individualized travel behavior during the transition of driving entity from human to machine. In order to evaluate traffic impact, it is necessary to estimate the total number of trips based on an understanding of individual travel characteristics. The Activity-based model(ABM), which allows for the reflection of individual travel characteristics, deals with all travel sequences of an individual. Understanding the relationship between travel and travel must be important for assessing traffic impact using ABM. However, the ABM has a limitation in the data hunger model. It is difficult to adjust in the actual demand forecasting. Therefore, we utilized a Tour-based model that can explain the relationship between travels based on household travel survey data instead. After that, vehicle registration and population data were used for correction. The result showed that, compared to the KTDB one, the traffic generation exhibited a 13% increase in total trips and approximately 9% reduction in working trips, valid within an acceptable margin of error. As a result, it can be used as a generation correction method based on Tour, which can reflect individual travel characteristics, prior to building an activity-based model to predict demand due to the introduction of autonomous vehicles in terms of road operation, which is the ultimate goal of this study.

Study on Predicting Changes in Traffic Demand in Surrounding SOCs Due to Road SOC Construction Using Big Data - Centered Around the Connecting Road between Incheon Yeongjong International City and Cheongna International City (3rd Bridge) - (빅데이터를 활용한 도로 SOC건설에 따른 주변 SOC 교통수요 변화 예측 연구 - 인천 영종국제도시~청라국제도시 간 연결도로(제3연륙교)를 중심으로 -)

  • Byoung-Jo Yoon;Sang-Hun Kang;Seong-Jin Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.705-713
    • /
    • 2024
  • Purpose: Currently, the only routes that enter Yeongjong Island are Yeongjong Bridge and Incheon Bridge, which are private roads. The purpose of this study is to predict and study changes in transportation demand for new routes and two existing routes according to the plan to open the 3rd Bridge, a new route, in December 2025. Method: The basic data for traffic demand forecast were O/D and NETWORK data from 2021.08, KOTI. In order to examine the reliable impact of Yeongjong Bridge and Incheon Bridge on the opening of the 3rd Bridge, it is necessary to correct the traffic distribution of Yeongjong Island and Incheon International Airport to suit reality, and in this study, the trip distribution by region was corrected and applied using Mobile Big Data. Result: As of 2026, the scheduled year of the opening of the 3rd Bridge, two alternatives, Alternative 1 (2,000 won) and Alternative 2 (4,000 won), were established and future transportation demand analysis was conducted, In the case of Alternative 1, which is similar to the existing private road toll restructuring, the traffic volume of the 3rd Bridge was predicted to be 42,836 out of 199,101 veh/day in the Yeongjong area in 2026, and the traffic volume reduction rate of the existing road was analyzed as 21.5%. Conlclusion: As a result of the review (based on Alternative 1), the proportion of convertted traffic on the 3rd Yanji Bridge was estimated to be 70% of Yeongjong Bridge and 30% of Incheon Bridge, and 21.5% of the predicted traffic reduction on the existing road when the 3rd Yanji Bridge was opened is considered appropriate considering the results of the case review and changes in conditions. It is judged that it is a way to secure the reliability of the prediction of traffic demand because communication big data is used to reflect more realistic traffic distribution when predicting future traffic demand.

Development of Homogeneous Road Section Determination and Outlier Filter Algorithm (국도의 동질구간 선정과 이상치 제거 방법에 관한 연구)

  • Do, Myung-Sik;Kim, Sung-Hyun;Bae, Hyun-Sook;Kim, Jong-Sik
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.7-16
    • /
    • 2004
  • The homogeneous road section is defined as one consisted of similar traffic characteristics focused on demand and supply. The criteria, in the aspect of demand, are the diverging rate and the ratio of green time to cycle time at signalized intersection, and distance between the signalized intersections. The criteria, in that or supply, are the traffic patterns such as traffic volume and its speed. In this study, the effective method to generate valuable data, pointing out the problems of removal method of obscure data, is proposed using data collected from Gonjiam IC to Jangji IC on the national highway No.3. Travel times are collected with licence matching method and traffic volume and speed are collected from detectors. Futhermore, the method of selecting homogeneous road section is proposed considering demand and supply aspect simultaneously. This method using outlier filtering algorithm can be applied to generate the travel time forecasting model and to revise the obscured of missing data transmitting from detectors. The point and link data collected at the same time on the rational highway can be used as a basis predicting the travel time and revising the obscured data in the future.

A Study on the Capacity Analysis of 8-lane basic section Freeway (8차로 고속도로 기본구간 용량분석에 관한 연구)

  • 김상구;서영선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.87-96
    • /
    • 1999
  • It is very important to analyze the capacity of basic freeway section in terms of planning, design, and operation of roads. Capacity, in Korean Highway Capacity Manual was Published in 1992, had been determined by data collected in only 4-lane freeway. But, Korea is continuously planning and constructing multi-lane roads for increasing traffic demand. For this reason, it is necessary to determine the capacity for multi-lane freeways. This study goals are two-fold the determination of lane capacity for 8-lane freeway; and the development of methodology determining total capacity using lane friction factor This study utilized the data collected by loop detectors at a station of FTMS in Kyungbu expressway. For determining capacities, this study analyzed maximum flow rate in various aspects such as collecting period, each lane, and total lane in one-way. In addition, this study evaluated the breakdown in traffic flow relations in order to find out interrelation of breakdown among lanes. Through this analysis, this study determined lane friction factors, critical speed, and critical density. Finally, this study expressed a new methodology of capacity analysis for multi-lane freeways using some findings from this analysis.

  • PDF

도심지 DMB 기반 DGPS 측위 정확도에 관한 연구

  • Lim, Young-min;Lee, Seung-churl;Kim, Young-jae;Lee, Byoung-gon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.280-282
    • /
    • 2014
  • DMB 기반 DGPS 시스템은 기존 중파 DGPS의 음영구역 해소 및 내륙에서의 DGPS 이용자 활성화를 목적으로 개발된 전달매체이다. 본 연구는 향후 유동인구와 교통량이 많아 이용 수요가 크게 예상되며, 멀티패스 등의 영향으로 측위 오차가 큰 도심에서 저가형 수신기를 이용하여 실제 기준국 및 가상 기준국의 DGPS 보정정보를 DMB 기반으로 수신하여 수신환경 수신기별 정지측량과 이동측위를 측정한 결과를 분석하였다.

  • PDF

Analysis on the Correction Factor of Emission Factors and Verification for Fuel Consumption Differences by Road Types and Time Using Real Driving Data (실 주행 자료를 이용한 도로유형·시간대별 연료소모량 차이 검증 및 배출계수 보정 지표 분석)

  • LEE, Kyu Jin;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.449-460
    • /
    • 2015
  • The reliability of air quality evaluation results for green transportation could be improved by applying correct emission factors. Unlike previous studies, which estimated emission factors that focused on vehicles in laboratory experiments, this study investigates emission factors according to road types and time using real driving data. The real driving data was collected using a Portable Activity Monitoring System (PAMS) according to road types and time, which it compared and analyzed fuel consumption from collected data. The result of the study shows that fuel consumption on national highway is 17.33% higher than the fuel consumption on expressway. In addition, the average fuel consumption of peak time is 4.7% higher than that of non-peak time for 22.5km/h. The difference in fuel consumption for road types and time is verified using ANOCOVA and MANOVA. As a result, the hypothesis of this study - that fuel consumption differs according to road types and time, even if the travel speed is the same - has proved valid. It also suggests correction factor of emission factors by using the difference in fuel consumption. It is highly expected that this study can improve the reliability of emissions from mobile pollution sources.