• Title/Summary/Keyword: 교통로 변화

Search Result 1,864, Processing Time 0.026 seconds

A Study on the Movement of Street-based Urban Morphology Using Analysis of Integrated Land Use-Transportation (토지이용-교통 통합적 분석을 통한 도로 기반 도시 형태학적 변화에 관한 연구)

  • Joo, Yong-Jin
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.63-72
    • /
    • 2011
  • Urban space structure tends to have a significant change in accordance with maintenance of urban infrastructure such as a traffic route. For this reason, quantitative analysis has been needed to establish spatial distribution and location patterns by considering change of both road accessibility and urban infrastructure level, which can have the most pervasive influence in urban development process. Therefore, this paper aims to analyze spatio-temporal urban morphology through considering distribution patterns of road among transportation infrastructures, population, and spatial structure of metropolitan areas, focusing on Seoul where population growth and the size of urban area have been dramatically increased. For this, we firstly developed and constructed time-series GIS database by using satellite images and topographic maps of the last 70 years to analyze variables which affect urban growth and transportation. In particular, we analyzed the transform of the system of the street by Space Syntax which is able to grasp hierarchical spatial structure through visibility of space and spatial cognition in terms of accessibility. What's more, we analyzed and visualized the relationship urban morphology and road according the regions of Seoul through IPA(Importance Performance Analysis). In terms of the integration land-use and transportation, Space Syntax approach is expected to contribute to efficient urban planning through understanding the influence which various transportation phenomena has an effect on urban development patterns.

A Base Study on the Construction of Optimal Operating Systems using the Optimal Traffic Intensity in the Container Terminal (최적교통강도를 이용한 컨테이너 터미널의 최적 운영체계 구축에 관한 기초적 연구)

  • Lee, Sang-Yong;Jung, Hun-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.85-94
    • /
    • 2005
  • The scale and operating conditions of logistical systems very sensitively varies according to the variation of traffic intensity that is affected by the arrival characteristics of trucks and the attributes of loading/unloading services in logistics facilities. More exactly, logistics costs are incurred according to variations of traffic intensity. which are intimately linked with in a given time period. Also. although traffic intensity changes minutely, the range of cost variation is wide. Nevertheless, with regard to operating logistics systems, the existing studies make no attempt to analyze these factors. Therefore, it was the purpose of this study to determine the optimal traffic intensity to minimize excessive logistics costs resulting from the generation of unnecessary costs such as waiting costs and overcosts in operating a facility. For the purposes of this analysis. a determination model of optimal traffic intensity was constructed according to queuing theory. The inflow/outflow conditions of trucks and the terminal operational conditions were collected from an off-dock container terminal in Busan. On the basis of this data. the optimal traffic intensity that could off-set excessive waiting and operating costs was determined quantitatively. Also. using the optimal traffic intensity to be determined. we consider the improvements of operating system in the logistics facilities.

Transport Demand Management in Developing Countries and Climate Change (개발도상국의 교통수요관리와 기후변화)

  • Lee, Shin
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.288-295
    • /
    • 2018
  • Purpose: The paper aims to compare the effectiveness of the two types of transport demand management measures, namely pull measures and push measures. Method: Case studies of two metropolitan areas in the developing world assess the extent to which increases in fuel prices can contribute to reducing automobile use and increasing the public transport use and the potential of urban rail transit to cause mode shift from automobiles. Within the case studies, a stated response survey of current car users has been conducted for Cairo and an on-line survey of rail transit users in Algiers. Results: There was a major proportion of car drivers who intend to switch to public transport, depending on the range of fuel prices in Cairo and a considerable proportion of rail users who have switched from automobiles resulting in a measurable reduction in CO2 emissions in Algiers. Conclusion: Investments in urban rail can be highly effective where there are demands for better public transport, but this type of pull measures can be much more effective if combined with push measures which significantly raise driving costs.

Accident Reduction Effectiveness of Safety Management Programs for a Commercial Transport Company (운수업체의 안전관리를 통한 교통사고 감소 효과분석 (천사 2020 프로젝트를 중심으로))

  • Jeong, Sang-Ho;O, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.53-62
    • /
    • 2011
  • This study discusses the effectiveness of safety management programs resulted from examining crash data collected during the period of implementation of the programs by a commercial transport company. For the analysis, two tye of comparison approaches are adopted: 1) a study comparing before-after of the implementation of a safety program, and 2) a study comparing a traffic accident index for various target groups. Technically, the effect of the safety management program is derived by eliminating both the 'regression to the mean' and the changing trend in the traffic accident index. The results show that safety management programs are effective to prevent traffic accidents, whereas company type appears irrelevant. The results also show that the effectiveness is significantly different depending on the intensity of safety management program and company size. In addition, a reciprocal effect is very likely to existamong the combination of these variables. This indicates that in order to improve the accident reduction effectiveness of such programs, the development and application of safety management programs based on both safety management strength and company size are required.

Traffic Volume Criteria for Roundabouts Based on Left-Turn Ratio (좌회전 비율에 따른 회전교차로 전환기준 교통량 산정)

  • Cho, Hanseon;Kim, Young-chun;Ahn, Woo-young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.54-67
    • /
    • 2016
  • All roundabouts are designed based on "Roundabout Design Guideline, Ministry of Land and Transportation, 2014" in Korea. The guideline also provides the traffic volume criteria to convert from signalized intersections to roundabouts. While the criteria are based on capacity of roundabouts, left-turn ratio and the number of lane on approaches are not considered to calculate the capacity of roundabouts. Therefore it is difficult to apply the traffic volume criteria in the real world. In this study, we studied the impact of left-turn ratio and the number of lane on approaches into capacity of roundabouts using micro-simulation. It was found that the capacity of roundabouts is changed according to left-turn ratio and the number of lane on approaches.

Autonomous Self-Estimation of Vehicle Travel Times in VANET Environment (VANET 환경에서 자율적 자가추정(Self-Estimation) 통행시간정보 산출기법 개발)

  • Im, Hui-Seop;O, Cheol;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.107-118
    • /
    • 2010
  • Wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) enable the development of more sophisticated and effective traffic information systems. This study presents a method to estimate vehicular travel times in a vehicular ad hoc network (VANET) environment. A novel feature of the proposed method is estimating individual vehicle travel times through advanced on-board units in each vehicle, referred to as self-estimated travel time in this study. The method uses travel information including vehicle position and speed at each given time step transmitted through the V2V and V2I communications. Vehicle trajectory data obtained from the VISSIM simulator is used for evaluating the accuracy of estimated travel times. Relevant technical issues for successful field implementation are also discussed.

A Hybrid Genetic Algorithm for Vehicle Routing Problem which Considers Traffic Situations and Stochastic Demands (교통상황과 확률적 수요를 고려한 차량경로문제의 Hybrid 유전자 알고리즘)

  • Kim, Gi-Tae;Jeon, Geon-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.107-116
    • /
    • 2010
  • The vehicle travel time between locations in a downtown is greatly influenced by both complex road conditions and traffic situation that changes real time according to various external variables. The customer's demands also stochastically change by time period. Most vehicle routing problems suggest a vehicle route considering travel distance, average vehicle speed, and deterministic demand; however, they do not consider the dynamic external environment, including items such as traffic conditions and stochastic demand. A realistic vehicle routing problem which considers traffic (smooth, delaying, and stagnating) and stochastic demands is suggested in this study. A mathematical programming model and hybrid genetic algorithm are suggested to minimize the total travel time. By comparing the results considering traffic and stochastic demands, the suggested algorithm gives a better solution than existing algorithms.

Rolling Horizon Implementation for Real-Time Operation of Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 교통상황 반영)

  • SHIN, Seong Il;CHOI, Kee Choo;OH, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.135-150
    • /
    • 2002
  • The basic assumption of analytical Dynamic Traffic Assignment models is that traffic demand and network conditions are known as a priori and unchanging during the whole planning horizon. This assumption may not be realistic in the practical traffic situation because traffic demand and network conditions nay vary from time to time. The rolling horizon implementation recognizes a fact : The Prediction of origin-destination(OD) matrices and network conditions is usually more accurate in a short period of time, while further into the whole horizon there exists a substantial uncertainty. In the rolling horizon implementation, therefore, rather than assuming time-dependent OD matrices and network conditions are known at the beginning of the horizon, it is assumed that the deterministic information of OD and traffic conditions for a short period are possessed, whereas information beyond this short period will not be available until the time rolls forward. This paper introduces rolling horizon implementation to enable a multi-class analytical DTA model to respond operationally to dynamic variations of both traffic demand and network conditions. In the paper, implementation procedure is discussed in detail, and practical solutions for some raised issues of 1) unfinished trips and 2) rerouting strategy of these trips, are proposed. Computational examples and results are presented and analyzed.

Macroscopic-Microscopic Sequential Traffic Simulation Analysis and Dynamic O/D Estimation for Sub-area (거시-미시 순차적 교통시뮬레이션 방법과 부분상세지구의 동적 O/D추정)

  • Lee, Jin Hak;Kim, Ikki;Kim, Dae Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.567-578
    • /
    • 2014
  • The study suggested a method to improve analysis accuracy such that the interactive effects of transportation changes between outside and inside of sub-areas were sequentially considered in the analysis by linking a macroscopic network analysis and a microscopic traffic simulation. A dynamic O/D estimation method was developed for practical implement of sub-area microscopic simulation analysis by using the results of macroscopic network analysis, the results of selected link analysis at the cordon line of the sub-area, departure time data of household travel survey, timely observed traffic volume data at the cordon. This estimated dynamic O/D for the sub-area made it possible to analyze traffic phenomena in details. Various detailed phenomena such as traffic queues, delay at intersection, and conflicts between vehicles, which is impossible to be grasped through a macroscopic analysis, can be analyzed with the dynamic microscopic traffic analysis. Through implementing an empirical study and validation, the study provided a reference result about accuracy of a microscopic traffic simulation of a sub-area to help its application for real transportation policy analysis.

Performance Evaluation for Telematics Traffic Safety System under Changing Error Rate (에러율 변화에 따른 텔레매틱스 교통안전시스템의 성능 평가)

  • Kim Young-Man;Park Hong-Jae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06d
    • /
    • pp.160-162
    • /
    • 2006
  • 현재 국내에서는 안전 운전 서비스 및 교통정보 수집체계 구축에 USN 기술을 적용하기 위한 다양한 연구와 시범사업이 추진되고 있다. 텔레매틱스 교통안전시스템[1][2]은 교차로 주변의 도로 위에 무선 센서 노드를 부착하여 무선 센서 노드 위를 지나는 차량들의 정보(속도, 위치, ID 등)를 수신하여 무선 센서 네트워크를 이용해 교차로 중앙에 위치한 베이스 스테이션으로 전송하고, 베이스 스테이션은 이렇게 실시간으로 수집한 정보를 분석하여 얻은 차량안전 운전정보를 교차로에 접근하는 차량들에게 브로드캐스팅하여 차량충돌을 회피하도록 하는 시스템이다. 본 논문에서 다루는 텔레매틱스 교통안전시스템은 Telematics Scheduling Protocol(TSP)[1]을 무선 센서 노드간 통신 프로토콜로 사용하는데 무선 센서 네트워크 특성상 온도, 날씨 등의 주변환경에 의해 노드간 통신에 있어서 높은 데이터 전송 에러율을 가지고 있다. 본 논문에서는 무선 센서 네트워크 프로토콜로 TSP를 사용하는 교통안전시스템에서 무선 데이터 전송 에러율, 교차로를 지나가는 차량의 숫자 그리고 도로 표면에 부착된 고정노드간 거리변화가 성능에 미치는 영향을 파악하기 위하여 네트워크 시뮬레이터 ns-2[3]를 이용해 시뮬레이션한다.

  • PDF