• Title/Summary/Keyword: 교차배열 원관열교환기

Search Result 1, Processing Time 0.017 seconds

Study on Experimental and Theroretical performances for a Compact Metallic Heat Exchanger for Fuel Cell Systems (연료전지용 소형 금속 열교환기의 성능에 대한 실험 및 이론적 연구)

  • Yoon, Young-Hwan;Paeng, Jin-Gi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.9-18
    • /
    • 2011
  • This study assessed the performance of a compact heat exchanger with staggered tube banks for recuperation of high temperature exhaust thermal energy for SOFC fuel cell system. The compact heat exchanger in this study is two pass system which consists of $315{\times}202.5{\times}48.5mm^3$ and 132 tubes of $6.0mm{\Phi}$ for each heat exchanger. From experiments of the 2 pass heat exchanger system, air temperature was increased from $60{\sim}85^{\circ}C$ to $402{\sim}482^{\circ}C$ while gas temperature was decreased from $600^{\circ}C$ to $305{\sim}402^{\circ}C$ according to mass flow rates of 3.9~7.8 g/s. The experimental heat transfer rates of the heat exchanger were compared with CFD numerical solutions with the conventional ${\xi}-NTU$ method. From the comparisons, the following conclusions were obtained. For the heat exchanger system, the relative errors of heat transfer rate by CFD solution were from 7.1 to 27%, and those by ${\xi}-NTU$ method were from 0.6% to 21% compared with experimental data. From the comparisons, it can be said that both of CFD and ${\xi}-NTU$ method almost simulated to experimental data except specific conditions. Pressure drops through air tubes and gas passages were calculated with both of the CFD computation and head loss equations. The differences between them were from 14 to 22%.