• Title/Summary/Keyword: 교차로 제어

Search Result 365, Processing Time 0.021 seconds

Dynamic Dilemma Warning System of WISDOM Based on DSRC (단거리 전용 무선 통신 기반의 WISDOM 동적 딜레마 경고 시스템)

  • Jung, Sung-Dae;Park, Soon-Yong;Lee, Sang-Sun;Kim, Jong-Bok;Moon, Young-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Integrating a field of transportation and IT is becoming a novel solution to social and economic problems which was previously focused on the investment in infrastructures. It also created new areas of industry such as ITS and telematics. Especially, vehicle communication is being considered very important and DSRC is also important in the field of rational ITS in recent. DSRC OBE has come into wide use through ETCS. In the field of traffic signal control, the research to implement an optimal traffic signal control system using a real-time information of good quality is being carried out and also the study of WISDOM was successfully completed. This paper shows the development of Dynamic-Dilemma zone warning service utilizing WISDOM and the evaluation of a reliability and a practicality through the field test. While the proposed Dynamic-Dilemma warning system transmits an information of signal time optimized by WISDOM, the OBE which receives this information makes dilemma zone based on its location and speed and gives warning to a driver.

  • PDF

Optimization of TIME-OF-DAY and Estimation on the Field Application for Arterial Road (간선도로 교차로의 TOD 시간계획 최적화 및 현장적용 평가)

  • Lee, In-Gyu;Lee, Ho-Sang;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.113-123
    • /
    • 2011
  • Traffic signal control is one of the most cost-effective means of improving urban mobility. With the recent progress of ITS (Intelligent Transportation System) and the installation of the real time traffic control systems, traffic signal control is conducted in online and real time. Normally, time-of-day (TOD) signal control is used with the system, but no definite methodology has yet been available for efficient TOD signal planing designing. Such method and process are in need to optimize the traffic signal timing plan. This paper proposes the optimization of TOD signal timings on arterials. The effects of the signal timings from the proposed method were assessed in the field. The proposed includes the methods determining the separation of the TOD break points and the TOD intervals. Those were tested on an arterial consisting of ten coordinated signalized intersections. It was found from the test results that the proposed TOD signal timing plans outperformed the previous signal timings.

Development of a Micro-Simulator Prototype for Evaluating Adaptive Signal Control Strategies (교통대응 신호제어전략의 평가를 위한 미시적 시뮬레이터의 원형 개발)

  • 이영인;김이래
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.143-160
    • /
    • 2001
  • Micro-simulation models have been recognized as an efficient assessment tool in developing traffic signal control technologies. In this paper a prototype of a microscopic simulation model which can be applied to evaluate the performance of traffic-adaptive signal control strategies was developed. In the simulation process, space-based arrays were appled to estimate parameters of car following and lane changing models. Two levels of link types, a micro-type and macro-type links, were also embodied in the simulation process. The proposed model was tested on a test network consists of 9 intersections. The performance of the proposed model was evaluated in link by link comparisons with the results of NETSIM. The results show that the proposed model could appropriately simulate traffic flows of the test network. The model also produces traffic adaptive signal timings, cycle lengths and green times for turning movements, based on the detector data. It implies that the optimization process of the model produces reasonable signal timings for the test network on the cycle basis.

  • PDF

Development of Signal Control Strategy for Oversaturated Intersections Using Wayside Video Equipment (노변영상장비를 활용한 과포화 신호제어전략 개발)

  • Lee, Hyun;Kim, Won-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.11-21
    • /
    • 2013
  • The conventional real-time signal control strategy for oversaturated situation generally requires a number of detectors at the intersection in order to identify the queue length at each approach. Also, existing strategy for the spillback has limited effect due to the temporal spillback control which only reduce the green split at the approach. In this study, a signal control system utilizing the imagery information from ITS roadside equipment is developed for operation of oversaturated intersections. The strategy calculates the saturation ratio based on the queue length extracted from ITS RSE, and designs the signal control variables according to the saturation ratio. The signal control strategy is divided into two phases: oversaturated and supersaturated. In oversaturated conditions, timing plan for main approach is optimized by the queue length. In oversaturated conditions where spillback might occur, the signal timing is designed in order to avoid the spillback. To increase field adaptability, the strategy is designed to adjust the split length, all-red-time, and clearance time, and keep the major signal control variables intact. The result of the simulation shows that in oversaturated conditions, the improvement is similar to the real-time signal control system. In case of, oversaturated conditions, however, the effect of the strategy is superior to that of a real-time system.

Operational Effectiveness of Roundabout by the Change of Pedestrian Traffic Volume (보행교통량 변화에 따른 회전교차로의 운영효과)

  • In, Byung-Chul;Park, Min-Kyu;Park, Byung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.24-31
    • /
    • 2011
  • This study deals with the operational effectiveness of roundabout. The roundabout is currently under consideration in our country depending on the result of existing researches, that the roundabout decreases delay and is environmentally friendly compared to the signalized intersection. The purpose of the study is to analyze the operational effectiveness of the roundabout by the change of pedestrian traffic volume. In pursing the above, this study gave particular emphasis to designing a network of roundabout, developing some scenarios for analysis including both entering traffic volume and pedestrians volume, and comparatively analyzing the average controlled delay time per vehicle. In this study, VISSIM model was used as a tool for traffic simulation. The main results are as follows. First, as a result of analyzing a traffic delay based on the pedestrian traffic volume, pedestrian traffic volume was analyzed to have a great impact on the roundabout operation. Second, the more pedestrian traffic volume were evaluated to indicate the more traffic delay. When the entering volumes with 1,000persons/hour (pedestrian volume) were more than 800pcph in the single-lane and 1,600pcph in the double-lane roundabout, the operational efficiencies of signalized intersections were evaluated to be better than those of roundabouts.

Reinforcement Learning-Based Adaptive Traffic Signal Control considering Vehicles and Pedestrians in Intersection (차량과 보행자를 고려한 강화학습 기반 적응형 교차로 신호제어 연구)

  • Jong-Min Kim;Sun-Yong Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.143-148
    • /
    • 2024
  • Traffic congestion has caused issues in various forms such as the environment and economy. Recently, an intelligent transport system (ITS) using artificial intelligence (AI) has been focused so as to alleviate the traffic congestion problem. In this paper, we propose a reinforcement learning-based traffic signal control algorithm that can smooth the flow of traffic while reducing discomfort levels of drivers and pedestrians. By applying the proposed algorithm, it was confirmed that the discomfort levels of drivers and pedestrians can be significantly reduced compared to the existing fixed signal control system, and that the performance gap increases as the number of roads at the intersection increases.

Avoiding Inter-Leg Collision for Data-Driven Control (데이터 기반보행 제어를 위한 다리 간 충돌 회피 기법)

  • Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.23-27
    • /
    • 2017
  • We propose an inter-leg collision avoidance method that compensates the disadvantage of the data-driven biped control method. The data-driven biped control technique proposed by Lee et. al [1] sometimes generates the movement that the two legs intersect with each other while walking, which can not be realized in walking of a real person or a biped robot. The proposed method changes the angle of the swing hip so that the swing foot can move inward only after passing the stance foot. This process introduces an additional angle adjustment algorithm to avoid collisions with the stance leg to the original feedback rule of the stance hip. It generates a stable walking simulation without any inter-leg collisions, by adding minimal changes and additional calculations to the existing controller behavior.

Realtime Traffic Control of Traffic Networks using Analytic Hierachy Process (계층분석방법을 이용한 교차로망의 실시간 교통제어)

  • Jin, Hyun-Soo;Hong, Yoo-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.47-53
    • /
    • 2010
  • The paper presents a method for decision the optimal cycle time during the vehicle traffic control in single intersection with AHP. To solve this uncertainty optimization problem, the optimization index in the form of linear addition and fuzzy measurement is assumed and fuzzy integral is used. Examples of solution for two cases of optimal cycle time in two traffic controller are presented and compared.

Nonlinear Adaptive Control for A Linear-Motor-Driven Two Axes through A Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 통한 리니어 모터의 비선형 적응제어)

  • Han, Sang-Oh;Hwang, Woo-Hyun;Lee, Sang-Min;Huh, Kun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.902-906
    • /
    • 2008
  • The linear motors are easily affected by load disturbance, force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbance. For highspeed/high-accuracy position control of a linear-motor-driven two axes, a nonlinear adaptive controller including a cross-coupling algorithm is designed in this paper. The nonlinear effects such as friction and force ripple are estimated and compensated. An enhanced approach for cross-coupling algorithm is proposed to effectively improve the biaxial contour accuracy with the closed-loop stability. The proposed controller is evaluated through the computer simulations.

  • PDF