• Title/Summary/Keyword: 교정 호선

Search Result 53, Processing Time 0.016 seconds

Comparison of frictional forces between orthodontic brackets and archwires (교정용 브라켓과 호선 간의 마찰 저항력의 비교)

  • Suh, Chung-Whan;Jung, Hye-Seung;Cho, Jin-Hyoung;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.116-126
    • /
    • 2005
  • The object of this study was to evaluate how friction that occurs during the sliding movement of an orthodontic archwire through orthodontic brackets is differently affected by variant designs and ingredients of brackets and archwires and bracket-archwire angles. In order to simulate the situations which could occur during orthodontic treatment with fixed appliances, 4 types of brackets (Gemini, a stainless steel twin bracket, Mini Uni-Twiu. a stainless steel bracket with a single bracket design and narrow mesio-distal width; Clarity, a metal-reinforced ceramic bracket; Transcend, a ceramic bracket) and 3 types of orthodontic archwires $(0.016',\; 0.016{\times}0.022'\;stainless\;steel,\;0.016'\;Nitinol)$ were used and the bracket-archwire angles were controlled as $0^{\circ},\;3^{\circ}\;6^{\circ},\;and\;9^{\circ}$ Gemini significantly show and the lowest static and kinetic frictions (P<0.001) Clarity showed the highest static and kinetic frictions with a bracket-archwire angle of $0^{\circ}$. and Transcend at $6^{\circ}\;and\;9^{\circ}$ (P<0.001). An $0.016{\times}0.022'$ stainless steel rectangular archwire significantly showed the highest static and kinetic frictions (P<0.01). The lowest static and kinetic frictions were observed when the bracket-archwire angles were $0^{\circ}\;and\;3^{\circ}$ with 0.010' stainless steel round archwires (P<0.01), and $6^{\circ}\;and\;9^{\circ}$ with 0.016 Nitinol (P<0.001). The static and kinetic frictions were increased as the bracket-archwire angles were increased (P<0.001)

An experimental study on the cytotoxicity of orthodontic wires (교정용 호선의 세포독성에 관한 실험적 연구)

  • Lim, Yong-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.591-599
    • /
    • 1996
  • This study was undertaken to investigate the cytotoxicity of orthodontic wires after doing various treatments to the wires. 018x025 inch Stainless steel(A) and Co-Cr(B) wires were used and each of them were divided into 4 groups. A-1 and B-1 groups were as received state, and A-2 and B-2 groups were heat treated. A-3 and B-3 groups were electropolished after heat treatment, and A-4 and B-4 groups were soldered with Ag-solder. Each group had 3 wires and these were sterilized with Ethylene Oxide gas. We used human gingival fibroblast cell culture and agar overlay technique to investigate the cytotoxicity of each group of wires. The cytotoxicity of wire was assessed using reaction index (zone index/lysis index). The findings of this study were as follows. 1. Both of the stainless steel wire and Co-Cr wire showed no cytotoxicity in as received state. 2. Heat treatment or electropolishing of the wires had no effect on the cytotoxicity of the wires 3. Soldered stainless steel wires showed a little wider zone of discoloration than soldered Co-Cr wires, but the zone index and cytotoxicity(reaction index) was not different. 4. Soldered wires showed moderate cytotoxicity in both of the wires.

  • PDF

The comparison of the frictional force by the type and angle of orthodontic bracket and the coated or non-coated feature of archwire (교정용 브라켓의 종류와 각도, 호선의 코팅 여부에 따른 마찰력의 비교)

  • Jang, Tae-Ho;Kim, Sang-Cheol;Cho, Jin-Hyoung;Chae, Jong-Moon;Chang, Na-Young;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • v.41 no.6
    • /
    • pp.399-410
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate the difference in frictional resistance among metal, ceramic, self-ligation brackets and coated or non-coated Ni-Ti archwires at various bracket-archwire angulations during the sliding movement of an orthodontic archwire, using an orthodontic sliding simulation device. Methods: Four types of bracket (Micro-arch Perpect Clear2 Clippy-C and Damon3 and 5 types of orthodontic archwire (0.014", 0.016", and 0.016" ${\times}$ 0.022" inch coated Ni-Ti, and 0.016" and 0.016" ${\times}$ 0.022" inch Ni-Ti) were used. Further, the bracket- archwire angles were set at 4 different angulations: $0^{\circ}$, $3^{\circ}$, $6^{\circ}$, and $9^{\circ}$. Results: The frictions from all the experimental groups were found to be significantly increased in order of self-ligation brackets, Micro-arch and Perpect Clear2 ($p$ < 0.001). The presence of a coat had no effect on the friction of the same sized archwires at $0^{\circ}$ and $3^{\circ}$ bracket-archwire angles ($p$ < 0.001). Coated archwires had significantly higher frictions than the same sized non-coated archwires at $6^{\circ}$ and $9^{\circ}$ bracket-archwire angles ($p$ < 0.001). The frictions increased significantly as the bracket-archwire angles were increased ($p$ < 0.001). Conclusions: The use of self-ligation brackets will be beneficial in clinical situations where a low frictional force is required. Further, in cases where crowding is not severe, the use of coated archwires should not cause problems. However, more additional explanation is required considering the fact that the damage of coated archwire and exposure of the metal portion in case of binding and notching and the effects of saliva were not taken into account.

Three dimensional finite element analysis of continuous and segmented arches with use of orthodontic miniscrews (교정용 미니스크류를 이용한 연속호선과 분절호선의 유한요소분석)

  • Lee, Eon-Hwa;Yu, Hyung-Seog;Lee, Kee-Joon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.237-254
    • /
    • 2011
  • Objective: The purpose of this study was to compare the displacement patterns shown by finite element analysis when the maxillary anterior segment was retracted from different orthodontic miniscrew positions and different lengths of lever arms in lingual continuous and segmented arch techniques. Methods: A three dimensional model was produced, the translation of teeth in both models was measured and individual displacement was calculated. Results: When traction was carried out from miniscrews in the palatal slope, lingual tipping of crowns and extrusion of the maxillary anterior segment were found in both continuous and segmented arches as the lever arms were made shorter. With miniscrews in the midpalatal suture area, the displacement patterns were similar to the palatal slope, but bodily movement of the upper incisors was observed in both continuous and segmented arches with the lever arm at 20 mm. When lever arms were longer, there was less extrusion of the incisors and more buccal displacement of the canines. Such displacement was shown less in the continuous arch than the segmented arch. The second premolar showed crown mesial tipping and intrusion, and the molars showed distal tipping in the continuous arch. The posterior segment was displaced three dimensionally in the segmented arch, but the amount of displacement was less than the continuous arch. Conclusions: It is recommended that lever arms of 20 mm in length be used for bodily movement of the anterior segment. Use of continuous or segmented arches affect the displacement patterns and induce differences in the amount of displacement.

Effects of recycling on the mechanical properties and the surface topography of Nickel-Titanium alloy wires (재생 과정이 니켈-티타늄 호선의 물리적 성질과 표면 거칠기에 미치는 영향)

  • Lee, Sung-Ho;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.453-465
    • /
    • 2000
  • The purpose of this study was to investigate the change of mechanical properties, surface topography and frictional force of various nickel titanium wires after recycling. Three types of nickel-titanium wires and one type of stainless steel wire were divided to three groups: as-received condition(T0:control group), treated in artificial saliva for four weeks(T1) and autoclaved after being treated in artificial saliva(T2). Some changes were observed for the selected mechanical properties in tensile test, surface topography by means of SEM and 3D profilogram, and frictional coefficient. The findings suggest that: 1. Nickel-titanium wires demonstrated no statistically significant differences in maximum tensile strength, elongation rate and modulus of elasticity, but stainless steel wire demonstrated statistically significant differences in maximum tensile strength, elongation rate and modulus of elasticity between the groups(p<0.05). 2. NiTi, Optimalloy, Stainless Steel wires demonstrated increased pitting and corrosion in SEM finding. 3. Recycled NiTi, Optimalloy and stainless steel wires demonstrated significantly greater surface roughness(Ra and Rq) through 3D profilogram when compared with the control wires(p<0.05), but Sentalloy didn't demonstrate significant difference. 4. Recycled NiTi, Optimalloy and stainless steel wires demonstrated significantly greater maximum frictional coefficient when compared with the control wires(p<0.05), but Sentalloy didn't demonstrate significant difference The changes of surface roughness and frictional coefficient in NiTi and Optimalloy had no clinical implication. Consequently recycled nickel titanium wires demonstrated no clinical problem in tensile properties, surface topography and frictional coefficient.

  • PDF

Intrusion of the extruded maxillary central incisor using skeletal anchorage system and unilateral segmental intrusion arch (골성 고정원과 편측 분절호선을 이용한 정출된 상악 중절치의 압하 치료)

  • Kwon, Eun-Young;Baek, Young-Jae;Park, Soo-Byung;Kim, Seong-sik;Kim, Yong-il;Choi, Youn-kyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.180-190
    • /
    • 2019
  • Patients who have a moderate periodontitis with pathologic tooth migration of maxillary incisors, it is necessary not only periodontal treatment for reduce periodontal inflammation, but also orthodontic treatment to teeth repositioning. For orthodontic treatment, it is necessary to apply less force and careful considerations of the center of resistance of the tooth and optimal force of tooth movement. At this time, the segmental arch applied only to the target teeth, is more effective and predictable, because applied force and direction can be controlled. In addition, to design the orthodontic appliance that can prevent the unwanted tooth movement that used as an anchorage is important. In recent years, various types of skeletal anchorage system have been used for preventing loss of the anchorage. We reported the patient who had extruded maxillary central incisor due to pathologic tooth migration, treated by a successful periodontal-orthodontic multidisciplinary treatment using an orthodontic appliance designed to apply less traumatic force and reduce an anchorage loss.

An Analytical Study on Strain Distribution Using Strain Gauge Attached On Root Surface (치근 부착 스트레인 게이지를 이용한 응력 분포 분석)

  • Kim, Sang-Cheol;Park, Kyu-Chan
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.325-333
    • /
    • 2001
  • Optimal orthodontic treatment could be possible when a orthodontist can predict and control tooth movement by applying a planned force system to the dentition. The moment to force(M/F) ratio at the bracket, has been shown to be a primary determinate of the pattern of tooth movement. As various n/F ratios are applied to the bracket on the tooth crown, strain distribution in periodontium can be changed, and the center of rotation in tooth movement can be determined. It is, therefore, so important in clinicalorthodontics to know the strain distribution in a force system of a M/F ratio. The purpose of this study was to analyze the strain distribution in orthodontic force system by strain gauge attached to tooth root, and to evaluate the usage of the method. For this study, an experimental upper anterior arch model was constructed, where upper central incisors, on the root surface of which, 8 strain gauges were attached, were implanted In the photoelastic resin, as in the case of 4mm midline diastema. Three types of closing of upper midline diastema closure were compared : 1. with elastomeric chain(100g force) in no arch wire, 2. elastomeric chain in .016“ round steel wire, 3. elastomeric chain in .016”x.022“ rectangular steel wire. The results were as follows. 1. Strain distributions on labial, lingual, mesial and distal root surface of tooth were able to be evaluated with the strain gauge method, and the patterns of tooth rotation were understood by presuming the location of moment arm. 2. Extrusion and tipping movement of tooth was seen in closing in no arch wire, and intrusion and bodily movement was seen with steel arch wire inserted.

  • PDF

Digital fabrication and application of clear aligner after alignment with NiTi archwires (NiTi 호선을 이용한 초기 배열 후 디지털 방식 투명교정장치의 적용)

  • Lim, Sung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.54 no.7
    • /
    • pp.551-562
    • /
    • 2016
  • There are interferences between the teeth to be moved and the clear aligner made from setup. These interferences generate forces which move teeth to the desired position. However, these can cause incomplete tooth capture of clear aligner. When these interferences exceed the acceptable deformation of aligner, unwanted intrusion of teeth to be moved occurs. When correction of rotation or tipping of teeth is attempted, intrusion prevails before rotation or tipping. However, clear aligner can induce labiolingual tipping or intrusion easily. To achieve preliminary alignment including control of rotation and tipping, NiTi archwires with fixed appliance can be used first, and then clear aligner can be used for finishing in mild Class I maloccusion cases. For this purpose, clear aligner can be made using a digital setup and 3D printing. To move teeth using a clear aligner, tooth capture is critical. To improve tooth capture of clear aligners, slingshot or vertical elastics can be used. These were discussed with illustrations.

  • PDF

The effect of temperature changes on force level of superelastic nickel-titanium archwires (온도 변화가 교정용 니켈-티타늄 호선의 하중값에 미치는 영향)

  • Chun, Kyoung-Ae;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.432-439
    • /
    • 2007
  • The purpose of this study was to evaluate the influence of intraoral temperature changes on the orthodontic force level of a superelastic nickel-titanium alloy wire. Methods: Nickel-titanium archwires of $0.016"{\times}0.022"$ thickness were tested with a three point bending test setup, and temperature changes were applied. The force level changes according to temperature changes were measured at a 1.5 mm deflection during the loading phase and a 1.5 mm deflection during the unloading phase from a deflection to 3.1mm. Ten cycles of thermal cycling from baseline $(37^{\circ}C)$ to cold $(20^{\circ}C)$ or hot $(50^{\circ}C)$temperature were applied. Results: Alter thermal cycling, the force level during the loading phase decreased and the force level during the unloading phase increased even after the temperature was changed to the initial $37^{\circ}C$. Conclusions: The results suggest that the orthodontic force level can not return to the initial force level after temperature changes. When applying superelastic nickel-titanium archwires, we must consider that a lighter force than the loading force and a heavier force than the unloading force will be applied after intraoral temperature changes caused by eating and drinking.

The effect of bracket width on frictional force between bracket and arch wire during sliding tooth movement (치아의 활주 이동시 브라켓 폭이 브라켓과 호선 사이의 마찰력에 미치는 효과)

  • Choi, Won-Cheul;Kim, Tae-Woo;Park, Joo-Young;Kwak, Jae-Hyuk;Na, Hyo-Jeong;Park, Du-Nam
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.253-260
    • /
    • 2004
  • Frictional force between the orthodontic bracket and arch wire during sliding tooth movement is related to many factors, such as the size, shape and material of both the bracket and wire, ligation method and the angle formed between the bracket and wire. There have been clear conclusions drawn in regard to most of these factors, but as to the effect of bracket width on frictional force there are only conflicting studies. This study was designed to investigate the effect of bracket width on the amount of frictional forces generated during clinically simulated tooth movement. Three different widths of brackets $(0.018{\times}0.025'\;standard)$ narrow (2.40mm), medium (3.00mm) and wide (4.25mm) were used in tandem with $0.016{\times}0.022'$ stainless steel wire. Three bracket-arch wire combinations were drawn on for 4 minutes on a testing apparatus with a head speed of 0.5mm/min and tested 7 times each. To reproduce biological conditions, dentoalveolar models were designed with indirect technique using a material with similar elastic properties as periodontal ligament (PDL). In addition, to minimize the effect of ligation force, elastomer was used with added resin, which was attached to the bracket to make up for the discrepancies of bracket width. The results were as follows: 1. Maximum frictional force for each bracket-arch wire combination was: Narrow (2.40mm): $68.09\pm4.69gmf$ Medium (3.00mm): $72.75\pm4.98 gmf$ Wide (4.25mm): $72.59\pm4.54gmf$ 2. Frictional force was increased with more displacement of wire through the bracket slot. 3. The ANOVA psot-hoc test showed that the bracker width had no significant effect on frictional force when tested under clinically simulated conditions(p>0.05).