• Title/Summary/Keyword: 교정의 식물

Search Result 40, Processing Time 0.025 seconds

Disturbance of University Campus Ecosystems by Alien Plants (외래식물에 의한 대학 교정 생태계의 교란)

  • Kim, Seeun;Lee, Hyohyemi;Cha, Hyeon-Cheol
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.80-92
    • /
    • 2015
  • Some of alien plants, which were introduced from foreign countries, have caused problems in Korea. Invasion of these alien plants in the ecosystem threatens the habitat of endemic species, reducing biodiversity, and causing a disturbance in the ecological system. In urbanized areas of campus universities, a diverse range of organisms were found and a comparison between the sites, near roads or housing sites were made because the campuses provided a large biotope. Although the campus had been exposed to interferences like gardening, it was also a place for most organisms to live in an active floating population due to free access. This research investigated the flora of alien plants that appeared in Beakseok University, Sangmyung University, Hoseo University and Dankook University, and relationship between the distribution of alien plants and the campus and green areas and distance from the highway. The total number of plant species and naturalized species found in the four universities was 189 and 43 species. Those of Dankook University were 136 and 35 species, Hoseo 108 and 25 species, Sangmyung 103 and 31 species, and Baekseok 97 and 26 species, respectively. The abundance of natural plants for each respective university tended to be higher as it became closer to the highway. Also, the closer the walking distance to the university, the greater the tendency for the degree of similarity to be higher. As a result, we may conclude that the distribution of alien plants and anthropogenic activities may be closely related.

Scientific considerations for the biosafety of the off-target effects of gene editing in crops (유전자교정작물 내 비의도적 돌연변이의 안전성 논란에 관한 과학적 고찰)

  • Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • The number of commercially approved gene-edited crops is gradually increasing, and in South Korea, it has led to intense investment in gene-edited crop development to increase international competitiveness. However, as with genetically modified crops, the safety of gene-edited crops regarding unexpected risks for humans and the environment is subject to an ongoing debate. In particular, unintentional "off-target effects" have become the center of controversy. In this review, we discuss typical plant characteristics (including somatic variation and ploidy), the extent of various off-target effects in genetically modified crops generated via horizontal transfer in nature, and the off-target effects in commercial genetically modified crops. We conclude that most off-target effects possibly occurring in gene-edited crops are not expected to be critically harmful to humans or the environment. Therefore, existing regulation for genetically modified crops should be enough for the risk assessment of gene-edited crops.

Effects of Teaching Based on Driver's Conceptual Change Model on Rectifying High School Students' Misconception of Photosynthesis and Respiration (Driver의 개념변화 학습 모형을 적용한 수업이 고등학생들의 식물의 광합성과 호흡의 오개념 교정에 미치는 효과)

  • Kim, Dong-Ryeul
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.6
    • /
    • pp.712-729
    • /
    • 2009
  • This study aims to research high school students' misconception of botanic photosynthesis and respiration, and as the measure of rectifying the misconception, to develop the teaching program based on Driver's conceptual change model, applying it to classes and observing the effect. Selected as the research subject was sixty-six students in 1st year of a highschool located in Busan who had chosen Biology Learning as discretionary subject, with their conceptual level on botanic photosynthesis and respiration researched through tests in drawing and descriptive writing. As a consequence of applying drawing as a way of classifying the levels of students' misconception on photosynthesis and respiration, many students' drawings included their misconception caused by textbooks or scientists, but after application of Driver's conceptual change model, they drew scientific drawings including the fundamental factors of botanic photosynthesis and respiration such as light, carbon dioxide, water, glucose, oxygen, leaf, chloroplast, mitochondria, stoma, and energy. Likewise, as a result of the descriptive writing test implemented for researching the students' conception on the various aspects of botanic photosynthesis and respiration, many students in the pretest showed misconception on the point of time and location at which botanic photosynthesis and respiration occur, botanic nutrient, the role of a leaf in photosynthesis, and the relation between botanic photosynthesis and respiration, but after teaching based on Driver's conceptual change model, their misconceptions on photosynthesis and respiration were rectified to a high degree.

Analysis of Horticultural Activities and Plants Preference on Prisoners Scheduled for Release (사회복귀예정 수형자의 원예활동 및 원예식물 선호도 분석)

  • Lee, Sang-Mi;Jeong, Sun-Jin;Moon, Ji-Hye;Lee, Ye-Jee;Lee, Sook
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.87-96
    • /
    • 2012
  • This study was performed to analyze the preference about horticultural activities and plants which is the basis of the horticultural therapy program development in prisoner who release from prison is expected. The analysis show that respondents were the most in male, thirty, less than high school, fraud, Christianity. More than 70% of respondents recognize that providing horticultural therapy for correction and rehabilitation program was desirable. More than 60% of respondents want to participate in the horticultural therapy for correction and rehabilitation program. Respondents who hadn't have experience for horticultural activities were the most, they preferred 'Plant appreciation such as walking, field trip, journey' mostly, and then 'Plant cultivation at indoor and outdoor', 'Decoration and craft with plant'. The most preferred plant was ornamental plant, and orchid in ornamental plant, fruit vegetable and tomato in fruit vegetable.

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops (바이러스 열성 저항성: 병저항성 작물 개발을 위한 유전자 교정 소재 발굴 연구의 동향)

  • Han, Soo-Jung;Heo, Kyeong-Jae;Choi, Boram;Seo, Jang-Kyun
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.49-61
    • /
    • 2019
  • Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.

Genome editing of hybrid poplar (Populus alba × P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein (현사시나무 원형질체에서 리보핵산단백질을 활용한 유전자 교정 방법 연구)

  • Park, Su Jin;Choi, Young-Im;Jang, Hyun A;Kim, Sang-Gyu;Choi, Hyunmo;Kang, Beum-Chang;Lee, Hyoshin;Bae, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.34-43
    • /
    • 2021
  • Targeted genome editing using the CRISPR/Cas9 system is a ground-breaking technology that is being widely used to produce plants with useful traits. However, for woody plants, only a few successful attempts have been reported. These successes have used Agrobacterium-mediated transformation, which has been reported to be very efficient at producing genetically modified trees. Nonetheless, there are unresolved problems with plasmid sequences that remain in the plant genome. In this study, we demonstrated a DNA-free genome editing technique in which purified CRISPR/Cas9 ribonucleoproteins (RNPs) are delivered directly to the protoplasts of a hybrid poplar (Populus alba × Populus glandulosa). We designed three single-guide RNAs (sgRNAs) to target the stress-associated protein 1 gene (PagSAP1) in the hybrid poplar. Deep sequencing results showed that pre-assembled RNPs had a more efficient target mutagenesis insertion and deletion (indel) frequency than did non-assembled RNPs. Moreover, the RNP of sgRNA3 had a significantly higher editing efficacy than those of sgRNA1 and sgRNA2. Our results suggest that the CRISPR/Cas9 ribonucleoprotein-mediated transfection approach is useful for the production of transgene-free genome-edited tree plants.

Development of Science-Art Convergence STEAM Education Program for Aesthetic Sensibility Competency : Making Illustrated Poem Using Pressed Flower (심미적 감성 역량 함양을 위한 과학-예술 융합 STEAM 교육 프로그램 개발 : 압화를 이용한 시화 제작)

  • 김희정;김재근
    • School Science Journal
    • /
    • v.13 no.4
    • /
    • pp.431-440
    • /
    • 2019
  • The purpose of this study is to develop a program of inquiry activities to cultivate students' aesthetic sensibility competency in high school education. After analyzing the programs developed for the development of emotional competency, we selected the subject of 'Making illustrated poem Using pressed flower' and developed a science-art convergence STEAM education program for a total of six classes. The developed program consists of three subtopics: knowing school plants, pressing flower drawing, and complete and enjoy illustrated poem. The program was applied to 26 life science club students composed of 1st and 2nd graders of Y High School in Seoul, and surveys and interviews were conducted for participating students and fellow science teachers. It has been shown to have a positive effect on inducing interest and cultivating aesthetic emotional capacity.

Current status on the modification of the scope for GMO regulation on the gene edited plants with no remnants of inserted foreign DNA fragments (외래 DNA단편이 잔존하지 않는 유전자교정식물에 대한 GMO규제 범위의 제외에 관한 국제 동향)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.137-142
    • /
    • 2019
  • Gene edited crops can be classified as SDN-1, SDN-2 and SDN-3 group depending on their mutation's range and the usage of donor DNA. The SDN-1 and SDN-2 crops, in particular, could be developed as 100% transgene-free, which do not contain any DNA fragment of the vector or guide RNA used for gene editing such as CRISPR Cas9 system. Therefore, there are no scientific methods available for the detection of these crops and differentiation with the one produced by conventional cross breeding techniques. Additionally, it would be impossible to properly implement the existing GMO regulation law, in particular, the national legislation for "GMO labelling". In this regard, Australia has announced that SDN-1 crops will not be subjected to the existing GMO regulation. Furthermore, Argentina and Brazil have established a new policy that GE crops with no transgene (100% transgene-free crops) should be exempted from the scope of the GMO. In addition, Japan has also announced that "an organism that has no remnants of inserted nucleic acid processed extracellularly is not subjected to the Cartagena Act". It means that SDN-2 crops can also be exempted from the scope of GMO. In this trend, in South Korea, I suggested that gene edited crops with no remnants of inserted foreign DNA fragments should be excluded from the existing GMO regulation. Thus, I expect that diverse elite crop lines should be developed by using advanced gene editing technologies

Comparison of Regeneration Conditions in Seven Pepper (Capsicum annuum L.) Varieties (7종의 고추(Capsicum annuum L.) 재분화 조건 비교)

  • Min-Su Kim;Yun-Jeong Han;Sharanya Tripathi;Jinwoo Kwak;Jin-Kyung Kwon;Byoung-Cheorl Kang;Jeong-Il Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.527-539
    • /
    • 2023
  • Pepper (Capsicum annuum L.) is an important vegetable and spice crop that has been cultivated worldwide. Pepper fruits have unique taste and aroma, providing a variety of antioxidants and compounds important for human health, which makes a high economic value. In addition, there is a high demand for new pepper varieties, according to consumer's preference. However, pepper is a recalcitrant plant for in vitro tissue and organ differentiation and plant regeneration, which makes it difficult to develop demanded varieties using newly developed technologies such as genetic engineering and gene editing. In this study, tissue culture and regeneration conditions were investigated using seven pepper varieties that were obtained from the core-collection of Seoul National University. We observed callus and bud induction and shoot formation using several media composition composed of different cytokinins and auxin concentrations. As a result, it was found that there were differences in callus induction and shoot formation of each variety depending on the hormone composition, and the highest regeneration was shown when the medium containing Zeatin Riboside and the petioles of seedlings were used. In particular, out of seven pepper varieties, CMV980 exhibited a higher regeneration efficiency (approximately 48%) than other varieties, followed by Yuwolcho. Therefore, this study provides CMV980 and Yuwolcho as good candidates that can be used for pepper transformation, which might contribute to the development of various varieties through gene editing technology in the future.